collate_fn是在dataloader里面用于给Dataset的一批一批数据进行整形的。 使用方法: data_loader=DataLoader(dataset,batch_size=5,shuffle=False,collate_fn=collate_fn)# 假设批量大小为4 (一定要写collate_fn = 你定义的collate function啊啊啊,鬼知道我debug了半天,单元测试都对跑起来怎么都不对是忘了导进去了) ...
classtorch.utils.data.DataLoader(dataset,batch_size=1,shuffle=False,# 每个epoch是否乱序sampler=None,batch_sampler=None,num_workers=0,# 是否多进程读取机制,0表示在用主线程计算collate_fn=None,# 把多个样本组合在一起变成一个mini-batch,不指定该函数的话会调用Pytorch内部默认的函数pin_memory=False,drop_...
collate_fn(collate,[kəˈleɪt],核对,校勘) 官方解释为: collate_fn: (callable, optional):mergesa list ofsamples to form a mini-batchof Tensor(s). Used when using batched loading from a map-style dataset. 其实,collate_fn可理解为函数句柄、指针...或者其他可调用类(实现__call__函数)...
dataloader=Data.DataLoader(dataset,batch_size=2,collate_fn=my_collate) 1. it=iter(dataloader) nex=next(it) print(nex) 1. 2. 3. 给大家的一个经验就是,一般dataset是不会报错的,而是根据dataset制作dataloader的时候容易报错,因为默认collate_fn把dataset的类型限制得比较死。 应用情形 假设我们还是4个输...
通过自定义collate_fn函数,我们可以轻松实现这些需求。 六、总结 DataLoader作为PyTorch中的一个重要组件,为我们提供了方便、高效的数据加载和处理功能。通过合理设置其参数和使用技巧,我们可以进一步提高模型的训练速度和效果。希望本文能够帮助大家更好地理解和使用DataLoader这一强大的数据加载神器!
collate_fn是DataLoader的一个可选参数,它指定了一个函数,用于将一批样本(从数据集中加载的一个批次的数据)合并成一个张量(或其他数据结构)。默认情况下,DataLoader使用内置的collate_fn,它假设每个样本都是一个张量,并将它们堆叠起来形成一个新的张量。但是,当样本的数据结构不是张量或者需要特殊的合并逻辑时,就需要...
dataloader之collate_fn 应用情形 前言 import torch.utils.data as tud 1. collate_fn:即用于collate的function,用于整理数据的函数。 说到整理数据,你当然也要会用tud.Dataset,因为这个你定义好后,才会产生数据嘛,产生了数据我们才能整理数据嘛,而整理数据我们使用collate_fn。
1. 前言 最近在复现MCNN时发现一个问题,ShanghaiTech数据集图片的尺寸不一,转换为tensor后的shape形状不一致,无法直接进行多batch_size的数据加载。经过查找资料,有人提到可以定义dataloader的collate_fn函数,在加载时将数据裁剪为最小的图片尺寸,以便
collate_fn:将样本整理成批次。Torch 中可以进行自定义整理。 加载内置 MNIST 数据集 MNIST 是一个著名的包含手写数字的数据集。下面介绍如何使用DataLoader功能处理 PyTorch 的内置 MNIST 数据集。 代码语言:javascript 代码运行次数:0 复制 Cloud Studio代码运行 ...
collate_fn: (callable) 自定义函数,用于合并多个样本到一个批次。默认的collate_fn会堆叠具有相同形状的张量。用户可以自定义此函数以满足特殊的数据整合需求。 pin_memory: (bool) 若为True,则在数据加载后将其移到 CUDA 可以直接访问的页锁定内存中,从而加快数据从 CPU 到 GPU 的传输速度。