转换前的数据类型: value object dtype: object astype()转换失败: could not convert string to float: 'abc' 转换后的数据类型: value float64 dtype: object 转换后的DataFrame内容: value 0 1.1 1 2.2 2 NaN 3 4.4 在这个例子中,'abc'是一个无法转换为浮点数的字符串,因此在使用astype()直接转换时会...
integer或signed:dtype里最小的数据类型:np.int8 unsigned:dtype里最小的无符号数据类型:np.uint8 float:最小的float型:np.float32 先举个简单的例子,再回到开始的dataframe df上去。 s是一个Series,其内容如下 直接使用to_numeric函数,对errors不进行处理的结果如下。可以...
dtype: object 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 请注意,points 列现在的数据类型为float64。 1. 方法二:使用to_numeric()将对象转为浮点数 以下代码显示了如何使用to_numeric()函数将 DataFrame 中的点列从对象转换为浮点数:...
dtype: object >>>pd.to_numeric(s) 0 8.0 1 6.0 2 7.5 3 3.0 4 0.9 dtype: float64 #可以看到这边是转成了float类型,如果数据中都是整数类型或者整数型的字符串,那么to_numeric转换成的是int类型 df["a"] = pd.to_numeric(df["a"]) #转换DataFrame中的一列 1. 2. 3. 4. 5. 6. 7. 8....
dtype:指定 DataFrame 的数据类型。可以是 NumPy 的数据类型,例如np.int64、np.float64等。如果不提供此参数,则根据数据自动推断数据类型。 copy:是否复制数据。默认为 False,表示不复制数据。如果设置为 True,则复制输入的数据。 Pandas DataFrame 是一个二维的数组结构,类似二维数组。
pd.DataFrame( data, index, columns, dtype, copy) 参数说明: data:输入的数据,可以是 ndarray,series,list,dict,标量以及一个 DataFrame。 index:行标签,如果没有传递 index 值,则默认行标签是 np.arange(n),n 代表 data 的元素个数。 columns:列标签,如果没有传递 columns 值,则默认列标签是 np.arange...
Time object Name object Company object Room # float64 etc object dtype: object 或者,使用您的方法,使用downcast='float'强制dtype: columns = ['Time','Name','Company','Room #', 'etc'] df = pd.DataFrame(columns=columns) df['Room #'] = pd.to_numeric(df['Room #'], errors='coerce'...
gas_pedal float64dtype:object info()- 打印 DataFrame 的概要信息(索引数据类型、列数据类型、内存使用等) 代码语言:javascript 代码运行次数:0 运行 AI代码解释 In[4]:df.info()<class'pandas.core.frame.DataFrame'>RangeIndex:10764entries,0to10763Datacolumns(total2columns):# Column Non-Null Count Dtype...
importpandasaspdimportnumpyasnpdf=pd.DataFrame({'A':1.,'B':pd.Timestamp('20130102'),'C':pd.Series(1,index=list(range(4)),dtype='float32'),'D':np.array([3]*4,dtype='int32'),'E':pd.Categorical(['test','train','test','train']),'F':'foo'})print(df)print(df.index)print...
data.dtypesDTobjectChanges float64 dtype:object 可见我们的datetime数据读进来之后就变成了object类型,而不是datetime类型 ③将DT列由Object类型转化为datetime类型; data = data.assign( DT=pd.to_datetime(data['DT'] )) 这里用到了两个函数assign()与to_datetime(): ...