pandas的一些应用 variables 这里用df[['data1']].join(dummies)相当于直接删除了key这一列,把想要的直接加在后面了。 9.多维DataFrame的拆解 10.DataFrame.join(other... values in a column 4.DataFrame.sort_values(by,axis=0, ascending=True,inplace=False, kind='quicksort ...
A D 0 0 3 1 4 7 2 8 11 # 第一种方法下删除column一定要指定axis=1,否则会报错 >>> df.drop(['B', 'C']) ValueError: labels ['B' 'C'] not contained in axis #Drop rows >>>df.drop([0, 1]) A B C D 2 8 9 10 11 >>> df.drop(index=[0, 1])A B C D 2 8 9 10...
# drop columns from a dataframe # df.drop(columns=['Column_Name1','Column_Name2'], axis=1, inplace=True) import numpy as np df = pd.DataFrame(np.arange(15).reshape(3, 5), columns=['A', 'B', 'C', 'D', 'E']) print(df) # output # A B C D E # 0 0 1 2 3 4 ...
这是pandas 0.16.1以后的新内容.文档在这里. sus*_*mit 41 从版本0.16.1你可以做到 df.drop(['column_name'], axis = 1, inplace = True, errors = 'ignore') Run Code Online (Sandbox Code Playgroud) 这也支持删除多个列,其中一些不需要存在(即没有引发错误``errors ='ignore'``)``df.drop...
1.用 .drop 方法删除 Pandas Dataframe 中列值的行 .drop方法接受一个或一列列名,并删除行或列。
df.drop(2, axis=0, inplace=True) ``` 这将从原始 DataFrame 中删除索引为 2 的行。 2.删除列: 要删除 DataFrame 中的列,可以使用 drop( 方法并将 axis 参数设置为 1 或 'columns'。例如,假设我们有一个名为 df 的 DataFrame,要删除名为 'column1' 的列,可以使用以下代码: ``` df.drop('colum...
在Pandas中,要删除DataFrame中的每n列,可以使用`drop`方法结合切片操作来实现。具体步骤如下: 1. 首先,确定要删除的列的索引范围。假设要删除的是每n列,那么可以使用切片操作来指...
Drop first n columns Drop column from multi-index DataFrame Drop column using a function Drop all the columns using loc Drop column using pandas DataFrame.pop() function Drop column using pandas DataFrame delete Compare DataFrame drop() vs. pop() vs. del ...
删除pandas DataFrame的某一/几列: 方法一:直接del DF['column-name'] 方法二:采用drop方法,有下面三种等价的表达式: 1. DF= DF.drop('column_name', 1); 2. DF.drop('column_name',axis=1, inplace=True) 3. DF.drop([DF.columns[[0,1, 3]]], axis=1,inplace=True) # Note: zero indexed...
在Pandas 中执行此操作的最佳方法是使用 drop: df = df.drop('column_name', axis=1) 其中1 是轴 号( 0 用于行, 1 用于列。) 要删除列而不必重新分配 df 你可以这样做: df.drop('column_name', axis=1, inplace=True) 最后,要按列 号 而不是按列 标签 删除,请尝试删除,例如第 1、2 和...