groupby('category').agg({'values': ['sum', 'mean']}) print(result) 输出: values sum mean category A 90 30.0 B 120 40.0 4. 过滤操作 可以使用 filter() 方法对分组后的数据进行过滤。 # 仅保留值总和大于 100 的组 result = df.groupby('category').filter(lambda x: x['values'].sum()...
DateFrame的gropuby函数,返回类型是DataFrameGroupBy,而Series的groupby函数,返回类型是SeriesGroupBy 查看源码后发现他们都继承了BaseGroupBy,继承关系如图所示 BaseGroupBy类中有一个grouper属性,是ops.BaseGrouper类型,但BaseGroupBy类没有__init__方法,因此进入GroupBy类,该类重写了父类的grouper属性,在__init__方法中...
df.groupby(by="a").sum() 把NA也当成了一个分组: df.groupby(by="a",dropna=False).sum() 3 小结 官网给的examples虽然简单,不过对groupby机制解释很透彻。 只是对于 groupby 之后得到的对象的解释很少,比如输出的对象是什么(就是groupby对象),这个对象可以用来干嘛(构造我们想要的数据框,可以用来画图、制表...
python dataframe groupby 结果转dataframe dataframe groupby agg,前言大家好,我是潜心。上篇文章提到了Groupby,但其中举例的代码有点问题,在提取序列时用到了for循环,效率很慢,后来查找了官方文档,才明白apply的重要性,再次对Groupby进行深入并总结。Groupby:spli
Dataframe groupby排序(分类变量)是指在数据分析和处理中,对数据框(Dataframe)中的分类变量进行分组(groupby)并按照某个指标进行排序的操作。 分类变量是指具有离散取值的变量,例如性别、地区、产品类别等。而Dataframe是一种二维表格数据结构,类似于关系型数据库中的表格,可以用来存储和处理结构化数据。 在进行Dataframe...
一、GroupBy对象:DataFrameGroupBy,SeriesGroupBy 1. 分组操作 groupby()进行分组,GroupBy对象没有进行实际运算,只是包含分组的中间数据按列名分组:obj.groupby(‘label’) 示例代码: 代码语言:javascript 代码运行次数:0 复制 Cloud Studio代码运行 # dataframe根据key1进行分组print(type(df_obj.groupby('key1')))#...
df.groupby(ser,axis=1).sum()# axis =1 列之间相加red+red+red , blue+blue 还可以通过自定义函数进行分组 : defcity_level(self): frist_city= ['北京','上海','深圳']ifselfinfrist_city:return'一线城市'return'二线城市'df.groupby(city_level,axis=0).sum()#👆 会在分组键上调用一次city_...
df_expenditure_mean = df.groupby(['Gender', 'name'], as_index=False).mean() 输出: 所见3 :解决groupby.apply() 后层级索引levels上移的问题 在所见 2 中我们知道,使用参数 as_index 就可使 groupby 的结果不以组标签为索引,但是后来在使用 groupby.apply() 时发现,as_index 参数失去了效果。如下例...
GroupBy机制 GroupBy机制 Hadley Wickham是许多流行R语言软件包的作者,他创造了用于描述组操作的术语拆分-应用-联合(split-apply-combine)。在操作的第一步,数据包含在pandas对象中,可以是Series、DataFrame或其他数据结构,之后根据你提供的一个或多个键分离到各个组中。分离操作是在数据对象的特定轴向上进行的。