之前可以先看一下人脸识别(不确定性)- Probabilistic Face Embeddings - 1 - 论文学习 Data Uncertainty Learning in Face Recognition Abstract 建模数据的不确定性对于噪声图像是很重要的,但是在人脸识别的研究却很少与这方面相关。其先驱作品[35]通过将每个嵌入的人脸图像建模为高斯分布来考虑不确定性。这很有效。然...
前段时间看了看人脸识别不确定性的研究,还是有点意思。这个领域目前比较重要的一篇是 Data Uncertainty Learning in Face Recognition (DUL, CVPR2020),好像没有官方代码,GitHub上有位朋友实现了这篇文章,不过…
Data Uncertainty Learning in Face Recognition 2021.5.25 CVPR20 Abstract 对于有噪声的图片,对于数据的不确定性非常重要,但很少有研究面部识别。之前的PFE将每个面部的嵌入作为高斯分布来考虑不确定性。它使用先前已有模型的固定特征作为高斯分布的均值,并通过一种特殊昂贵的度量方法预测方差,所以这个方法使用起来并不方...
【深度人脸识别】Data Uncertainty Learning in Face Recognition本文来自旷视和中国科学技术大学。深度人脸识别目前是一个很重要的领域。本文提出把数据不确定性估计理论应用于人脸识别领域的Data Uncertainty Learning(DUL)算法。DUL算法的两种训练模式可与各种主流人脸识别方法的损失函数有效结合使用,进一步提升模型在低质量...
uncertaintyComputer visionface recognitionmachine learningpattern recognitionThe image of a face varies with the illumination, pose, and facial expression, thus we say that a single face image is of high uncertainty for representing the face. In this sense, a face image is just an observation and...
Citation @misc{chang2020data, title={Data Uncertainty Learning in Face Recognition}, author={Jie Chang and Zhonghao Lan and Changmao Cheng and Yichen Wei}, year={2020}, eprint={2003.11339}, archivePrefix={arXiv}, primaryClass={cs.CV} }...
In an era defined by the relentless influx of data from diverse sources, the ability to harness and extract valuable insights from streaming data has becom
Top 5 risks for 2025: U.S. uncertainty, global trade war, digital attacks Dec 30, 2024ByAaron Nicodemus A prominent risk management firm has issued its predictions for the top five risks for business in 2025, along with guidance for how organizations should prepare and respond. ...
anyone involved in the integration of AI and big data. Scheduled from June 9 to 12, 2025, in San Francisco, CA, this summit offers both in-person and online participation options. Attendees can look forward to cutting-edge sessions on Spark, machine learning frameworks, andAI-driven ...
Data produced in the context of IoT by the things are generally unreliable. Data outliers are one of the major manifestations of data uncertainty. In this section, we study data outliers as a specific representation of the “Unreliable Readings” DQ problem class. We start by defining the conce...