uniflow is a unified interface to solve data augmentation problem for LLM training. It enables use of different LLMs, including OpenAI, Huggingface, and LMQG with a single interface. Using uniflow, you can easily run different LLMs to generate questions and answers, chunk text, summarize text,...
Contribute to SuDIS-ZJU/awesome-tabular-data-augmentation development by creating an account on GitHub.
One of these, Mosaic augmentation, is the process of combining four images, forcing the model to learn the identities of the objects in new locations, partially blocking each other through occlusion, with greater variation on the surrounding pixels. It has been shown that using this throughout ...
github.com/aleju/imgaug),多样本(1SMOTE SMOTE即Synthetic Minority Over-samplingTechnique(合成少数过采样技术,它是通过人工合成新样本来处理样本不平衡问题,从而提升分类器性能)9背景:类不平衡现象指的是数据集中各类别数量不近似相等。如果样本类别之间相差很大,会影响分类器的分类效果。假设小样本数据数量极少,如仅...
MMDet 3.0.0rc6 | 大家好,MMDetection 发布了 v3.0.0rc6 版本。 我们积极响应社区需求,在 v3.0.0rc6 中支持了检测器计算 FLOPS 和 TTA(Test Time Augmentation),提供了面向 OpenMMLab 2.0 接口统一的用于模型推理的 DetInferencer ,同时提供了 RTMDet-Ins 的 ONNXRuntime 和 TensorRT 部署教程,此外还支持了许...
Automatic Data Augmentation for Deep Learning techniques deeplearningdeeplearning-frameworkdeel-learningdataaugmentationautomaticdataaugmentationautodataaugmentation UpdatedSep 25, 2020 Python A simple python-script to augment an annotated dataset in JPG/XML Format as used by LabelIMG (https://github.com/tzu...
semi-supervised-learningdata-augmentation-strategiescifar10data-augmentationcvprcifar100label-noiseaugmentation-policieslabel-noise-robustnessclothing1mcvpr2021 UpdatedJan 9, 2022 Python JunlinHan/YOCO Star104 Code for You Only Cut Once: Boosting Data Augmentation with a Single Cut, ICML 2022. ...
LLMs are a phenomenal piece of technology for knowledge generation and reasoning. They are pre-trained on large amounts of publicly available data. How do we best augment LLMs with our own private data? We need a comprehensive toolkit to help perform this data augmentation for LLMs. ...
Note: Not all transforms have a speedup this impressive compared to CPU. In general, running audio data augmentation on GPU is not always the best option. For more info, see this article:https://iver56.github.io/audiomentations/guides/cpu_vs_gpu/ ...
PipelineSometimesApply some augmentation functions randomly Installation The library supports python 3.5+ in linux and window platform. To install the library: pip install numpy requests nlpaug or install the latest version (include BETA features) from github directly ...