CycleGAN一共有4个网络:G_A2B, D_A2B,G_B2A, D_B2A, 后两个是新增的 。 1.2 代码来源 pytorch-CycleGAN-and-pix2pix\models\cycle_gan_model.py 1.3 网络结构代码解读 def __init__(self, opt): """Initialize the CycleGAN class. Parameters: opt (
相对于基础型的GAN网络,pix2pix网络,并没有增加新的网络结构,只在基础型的GAN基础上做了如下的优化: 判决网络的输入:增加了输入图片,与输出fake图片一起参与判决 判决网络的输出:不仅仅需要参与判决网络的判决,还需要与样本标签图片进行像素级的比较。 1.2 代码来源 pytorch-CycleGAN-and-pix2pix\models\pix2pix_...
本发明公开一种基于CycleGAN的图片训练的网络结构ArcGAN及方法,网络结构ArcGAN由生成器和双鉴别器组成,双鉴别器包括粗糙鉴别器和精细鉴别器;编码器包括一个输入层和三个下采样卷积层,每个下采样卷积层后接两个和输入层结构一样的平卷积层;转换器包括五个没有池化层的密集卷积块,每块包含五个带有瓶颈层的密集卷积层...