前天发了一个推文【目标检测Anchor-Free】CVPR 2019 CenterNet,讲解的是CenterNet: Keypoint Triplets for Object Detection这篇论文,今天要讲的这篇论文全名是Object as Points。这篇论文提出的网络也被叫作CenterNet,和前面介绍的CenterNet重名了,注意加以区别。论文原文见附录。 摘要:目标检测往往是在图像上将目标以矩...
前言 前天发了一个推文【目标检测Anchor-Free】CVPR 2019 CenterNet,讲解的是CenterNet: Keypoint Triplets for Object Detection这篇论文,今天要讲的这篇论文全名是Object as Points。这篇论文提出的网络也被叫作CenterNet,和前面介绍的CenterNet重名了,注意加以区别。论文原文见附录。 摘要:目标检测往往...
偏移值只使用GT关键点,其它位置的点不参与训练。 Objects as Points 定义$(x^{(k)}1, y ^{(k)}_1, x ^{(k)}_2,y^{(k)}_2)$为目标$k$的GT框,类别为$c_k$,其中心点为$p_k=(\frac{x^{(k)}_1+x^{(k)}_2}{2}, \frac{y^{(k)}_1+y^{(k)}_2}{2})$。论文...
CSP将目标定义为中心点和尺寸,通过网络直接预测目标的中心和寸尺,相对于传统的RCNN类型检测算法轻量化了不少。整体思想与Object as Points撞车了,发表于同一期会议,真是英雄所见略同了。 更多内容请关注 微信公众号【晓飞的算法工程笔记】...
论文基于关键点预测网络提出CenterNet算法,将检测目标视为关键点,先找到目标的中心点,然后回归其尺寸。对比上一篇同名的CenterNet算法,本文的算法更简洁且性能足够强大,不需要NMS等后处理方法,能够拓展到其它检测任务中 来源:晓飞的算法工程笔记 公众号 论文: Object
论文: Objects as Points 论文地址:https://arxiv.org/abs/1904.07850 论文代码:https:///xingyizhou/CenterNet Introduction 论文认为当前的anchor-based方法虽然性能很高,但需要枚举所有目标可能出现的位置以及尺寸,实际上是很浪费的。为此,论文提出了简单且高效的CenterNet,将目标表示为其中心点,再通过中心点特征...
Bottom-Up Object Detection by Grouping Extreme and Center Points通过对极值点和中心点进行分组来进行自下而上的对象检测 Bounding Box Regression With Uncertainty for Accurate Object Detection用于准确目标检测的不确定性边界框回归 Box-Driven Class-Wise Region Masking and Filling Rate Guided Loss for Weakly ...
如果使用了偏移值预测分支,则对映射后的中心点进行调整。 Conclusion CSP将目标定义为中心点和尺寸,通过网络直接预测目标的中心和寸尺,相对于传统的RCNN类型检测算法轻量化了不少。整体思想与Object as Points撞车了,发表于同一期会议,真是英雄所见略同了。
ExtremeNet for Object detection:ExtremeNet基于HourglassNetwork针对每个类别预测五个heatmaps。本文参考CornerNet的训练初始化,损失及偏移预测,offset的预测是于与类别无关的,而四个极点的heatmap是类别明确的。center heatmap中不存在offset prediction.本文输出5XC的heatmaps及4x2的heatmaps用于预测offset。整体流程如下...
X. Zhou, D. Wang, and P. Kr¨ahenb¨uhl. Objects as points. arXiv preprint arXiv:1904.07850, 2019 本文亮点总结 1.文章认为,目标检测,实例分割和姿态估计本质上都是识别物体,只是表征物体的形式有所不同。本文只用一套方案统一了三种任务。