CV_TM_SQDIFF 平方差匹配法:该方法采用平方差来进行匹配;最好的匹配值为0;匹配越差,匹配值越大。 CV_TM_CCORR 相关匹配法:该方法采用乘法操作;数值越大表明匹配程度越好。 CV_TM_CCOEFF 相关系数匹配法:1表示完美的匹配;-1表示最差的匹配。 CV_TM_SQDIFF_NORMED 归一化平方差匹配法 CV_TM_CCORR_NORMED 归...
TM_SQDIFF:计算平方不同,计算出来的值越小,越相关 TM_CCORR:计算相关性,计算出来的值越大,越相关 TM_CCOEFF:计算相关系数,计算出来的值越大,越想关 TM_SQDIFF_NORMED:计算归一平方不同,计算出来的结果越接近0,越相关 TM_CCORR_NORMED:计算归一化相关性,计算出来的结果越接近1,越相关 TM_CCOEFF_NORMED:计算归...
学习计算机视觉最重要的能力应该就是编程了,为了帮助小伙伴尽快入门计算机视觉,小白准备了【OpenCV入门】...
Static TM_CCORR := 2 Static TM_CCORR_NORMED := 3 Static TM_CCOEFF := 4 Static TM_CCOEFF_NORMED := 5; ColormapTypes Static COLORMAP_AUTUMN := 0 Static COLORMAP_BONE := 1 Static COLORMAP_JET := 2 Static COLORMAP_WINTER := 3 ...
methods = ['cv2.TM_CCOEFF_NORMED', 'cv2.TM_CCOEFF', 'cv2.TM_SQDIFF_NORMED', 'cv2.TM_SQDIFF', 'cv2.TM_CCORR', 'cv2.TM_CCORR_NORMED'] for method in methods: draw_img = img.copy() op = eval(method) ret = cv2.matchTemplate(img, template, op) ...
'cv2.TM_CCORR', 'cv2.TM_CCORR_NORMED'] ret = cv2.matchTemplate(img, template, cv2.TM_CCOEFF_NORMED) min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(ret) draw_img = original.copy() ret = cv2.rectangle(draw_img, max_loc, (max_loc[0]+w, max_loc[1]+h), (0, 0, 255)...
归一化相关匹配CV_TM_CCORR_NORMED 相关系数匹配CV_TM_CCOEFF:用两者的相关系数匹配,1表示完美的匹配,-1表示最差的匹配 归一化相关系数匹配CV_TM_CCOEFF_NORMED import cv2 def findpic(self, target='background.png', template='slider.png'): """ :param target: 背景图路径 :param template: 滑块图片路...
在使用OpenCV进行模板匹配时,如果你发现cv2.TM_CCORR方法无法识别到图像中的多个目标,可以考虑以下方法来改进: 检查模板匹配算法的参数设置: 确认你使用的参数是否适合识别多个目标。对于cv2.TM_CCORR,它计算的是模板和图像区域之间的互相关。这个方法对光照变化比较敏感,可能不适合所有场景。你可以尝试使用其他模板匹配方...
请注意,OpenCV中的掩码模板匹配只适用于方法TM_SQDIFF和TM_CCORR_NORMED。
归一化相关匹配CV_TM_CCORR_NORMED 相关系数匹配CV_TM_CCOEFF:用两者的相关系数匹配,1表示完美的匹配,-1表示最差的匹配 归一化相关系数匹配CV_TM_CCOEFF_NORMED import cv2 def findpic(self, target='background.png', template='slider.png'): """ :param target: 背景图路径 :param template: 滑块图片路...