只需要在命令之前设置环境变量,简单来说比如原本程序是命令行运行python train.py 假定这里gpu总共有八块,通过nvidia-smi查看发现5,6,7是空闲的(从0开始编号) 则运行命令修改为:CUDA_VISIBLE_DEVICES=5,6,7 python train.py
cuda_visible_devices用于设置哪些GPU设备对CUDA可见。 该环境变量的取值为一个逗号分隔的GPU设备ID列表,表示CUDA运行时应对哪些GPU设备可见。设备ID从0开始,按顺序分配给系统上的每个GPU设备。 使用示例: 1.设置只有设备0和设备1对CUDA可见: ``` $ export CUDA_VISIBLE_DEVICES=0,1 ``` 上述命令会将CUDA_VISIBL...
但是GPU并不是一个独立运行的计算平台,而需要与CPU协同工作,可以看成是CPU的协处理器,因此当我们在说GPU并行计算时,其实是指的基于CPU+GPU的异构计算架构。在异构计算架构中,GPU与CPU通过PCIe总线连接在一起来协同工作,CPU所在位置称为为主机端(host),而GPU所在位置称为设备端(device) CUDA是NVIDIA公司所开发的GP...
$CUDA_VISIBLE_DEVICES=1python my_script.py 这样my_script.py脚本就只能使用GPU 1。 在Python脚本内设置 如果想在Python的脚本内设置使用的GPU,可以使用os.environ,如下: 代码语言:javascript 复制 importos os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"# see issue #152os.environ["CUDA_VISIBLE_DEVICES"...
MIG分区的本质是只有一个MIG“实例”对CUDA运行时的任何实例化都是可见的,这类似于每个进程。
To determine the device ID for the available hardware in your system, you can run NVIDIA’s deviceQuery executable included in the CUDA SDK. 什么意思呢?就是说可以通过CUDA_VISIBLE_DEVICES 环境变量来限制CUDA程序所能使用的GPU设备。CUDA应用运行时,CUDA将遍历当前可见的设备,并从零开始为可见设备编号。
os.environ[“CUDA_DEVICE_ORDER”] = “PCI_BUS_ID” # 按照PCI_BUS_ID顺序从0开始排列GPU设备 os.environ[“CUDA_VISIBLE_DEVICES”] = “0” #设置当前使用的GPU设备仅为0号设备 设备名称为'/gpu:0' os.environ[“CUDA_VISIBLE_DEVICES”] = “1” #设置当前使用的GPU设备仅为1号设备 设备名称为'...
I want to finetune llama2-13b in my 48G A6000 GPU(GPUid:1) of single GPU mode. Though I have already set CUDA_VISIBLE_DEVICES=1, the finetune process is still run on my 24G A5000 GPU(GPUid:0), which is have limited memory to run the process. ...
在初始化 TensorFlow 之前执行以下操作以将 TensorFlow 限制为第一个 GPU。 import os os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" # see issue #152 os.environ["CUDA_VISIBLE_DEVICES"]="0" 您可以仔细检查您是否拥有对 TF 可见的正确设备 from tensorflow.python.client import device_lib print ...
raise GPUAffinityError(msg) try: # interpret elements of CUDA_VISIBLE_DEVICES as integer indices remapped_device_ids = [int(id) for id in visible_devices] device_idx = remapped_device_ids[device_idx] except ValueError: # interpret elements of CUDA_VISIBLE_DEVICES as UUID strings num_devices...