export CUDA_VISIBLE_DEVICES=0,1 在Python 脚本中设置环境变量。例如: python import os os.environ["CUDA_VISIBLE_DEVICES"] = "0,1" 验证设置是否生效: 在设置环境变量后,重新启动你的 CUDA 程序。 程序应该只能看到和使用你指定的 GPU 设备。你可以通过打印 CUDA 可见设备列表来验证这一点: python im...
os.environ["CUDA_VISIBLE_DEVICES"]="1" 或 代码语言:javascript 代码运行次数:0 运行 AI代码解释 CUDA_VISIBLE_DEVICES=1python**.py 注意:这种设置方法一定要在第一次使用 cuda 之前进行设置 永久设置 linux: 在~/.bashrc 的最后加上export CUDA_VISIBLE_DEVICES=1,然后source ~/.bashrc windows: 打开我的...
如果使用多gpu运行程序,可以直接使用CUDA_VISIBLE_DEVICES=0,1,2,3 python xxx.py来设置该程序可见的gpu。当然也可以在程序开头设置os.environ["CUDA_VISIBLE_DEVICES"] = '0,1,2,3'来使用。 如果在pycharm中调试时,使用多gpu的话,除了直接在程序中设置os.environ["CUDA_VISIBLE_DEVICES"] = '0,1,2,3'...
exportCUDA_VISIBLE_DEVICES=0# 只使用第一个 GPU 1. 在Python 代码中设置 importos# 设置使用的 GPU 设备为第一个os.environ["CUDA_VISIBLE_DEVICES"]="0" 1. 2. 3. 4. 步骤3:在 Python 代码中进行设置 确保在进行任何与 GPU 相关的操作之前设置CUDA_VISIBLE_DEVICES。 importosimporttensorflowastf# 也...
我有两个 GPU,想通过 ipynb 同时运行两个不同的网络,但是第一个笔记本总是分配两个 GPU。 使用 CUDA_VISIBLE_DEVICES,我可以隐藏 python 文件的设备,但我不确定如何在笔记本中这样做。 有没有办法将不同的 GP...
1.1 使用nohup命令运行Python脚本 1.2 查看运行中的进程 1.3 查看输出日志 2. 在多个GPU上训练模型 2.1 启动第一个程序,指定使用第0号GPU 2.2 启动第二个程序,指定使用第1号GPU 2.3 查看运行中的进程 2.4 查看输出日志 3. 总结 在机器学习和深度学习中,训练模型时经常需要使用GPU来加速计算。本文将介绍如何使用...
python使用CUDA_VISIBLE_DEVICES环境变量 cuda环境变量配置,因近期项目需要GPU加速,故对两台电脑上的VS配置了cuda8.0 总结如下:1 官网下载和系统匹配的cuda软件 https://developer.nvidia.com/cuda-downloads2 直接使用默认选项安装 3&nb
命令行出现CUDA_VISIBLE_DEVICES=0 python trainer.py这种命令 这是Linux可以的,但是Windows不行。 解决方案: 这条命令的含义很简单,也就是指定某个GPU来运行程序,我们可以在程序开头添加指定GPU的代码,效果是一样的: copy 1 2 importosos.environ["CUDA_VISIBLE_DEVICES"]='0' ...
[工具的使用] python jupyter 环境安装配置拓展(nbextension)(ExcecuteTime:执行时间,Table of Content) 5868 4 17:08 App [全栈深度学习] 02 vscode remote(远程)gpus 服务器开发调试 debugger(以 nanoGPT 为例) 4972 3 12:32 App [DRL] 从 TRPO 到 PPO(PPO-penalty,PPO-clip) 3543 0 27:21 App ...
os是python中非常常用的系统包,而os.environ则是设置查看系统环境变量的模块,我们可以通过这个模块把CUDA_VISIBLE_DEVICES的设置写入到环境变量中,这样在执行这个程序的时候就可以指定GPU运行了。 importos os.environ["CUDA_VISIBLE_DEVICES"] ="0,1"##仅使用device0和 device1 ...