python使用CUDA_VISIBLE_DEVICES环境变量 cuda环境变量配置,因近期项目需要GPU加速,故对两台电脑上的VS配置了cuda8.0 总结如下:1 官网下载和系统匹配的cuda软件 https://developer.nvidia.com/cuda-downloads2 直接使用默认选项安装 3&nb
importos# 设置使用的 GPU 设备为第一个os.environ["CUDA_VISIBLE_DEVICES"]="0" 1. 2. 3. 4. 步骤3:在 Python 代码中进行设置 确保在进行任何与 GPU 相关的操作之前设置CUDA_VISIBLE_DEVICES。 importosimporttensorflowastf# 也可以是其他深度学习框架# 设置使用的 GPU 设备os.environ["CUDA_VISIBLE_DEVICE...
方法一:在Python代码中设置环境变量 你可以在Python脚本的开始部分添加以下代码来设置CUDA_VISIBLE_DEVICES环境变量: python import os os.environ["CUDA_VISIBLE_DEVICES"] = "0" # 设置使用编号为0的GPU 方法二:在命令行中临时设置环境变量 如果你是在Windows的命令行(cmd)中运行Python脚本,可以使用set命令来临...
如果使用多gpu运行程序,可以直接使用CUDA_VISIBLE_DEVICES=0,1,2,3 python xxx.py来设置该程序可见的gpu。当然也可以在程序开头设置os.environ["CUDA_VISIBLE_DEVICES"] = '0,1,2,3'来使用。 如果在pycharm中调试时,使用多gpu的话,除了直接在程序中设置os.environ["CUDA_VISIBLE_DEVICES"] = '0,1,2,3'...
$CUDA_VISIBLE_DEVICES=1python my_script.py 这样my_script.py脚本就只能使用GPU 1。 在Python脚本内设置 如果想在Python的脚本内设置使用的GPU,可以使用os.environ,如下: 代码语言:javascript 复制 importos os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"# see issue #152os.environ["CUDA_VISIBLE_DEVICES"...
命令行出现CUDA_VISIBLE_DEVICES=0 python trainer.py这种命令 这是Linux可以的,但是Windows不行。 解决方案: 这条命令的含义很简单,也就是指定某个GPU来运行程序,我们可以在程序开头添加指定GPU的代码,效果是一样的: copy 1 2 importosos.environ["CUDA_VISIBLE_DEVICES"]='0' ...
1.1 使用nohup命令运行Python脚本 1.2 查看运行中的进程 1.3 查看输出日志 2. 在多个GPU上训练模型 2.1 启动第一个程序,指定使用第0号GPU 2.2 启动第二个程序,指定使用第1号GPU 2.3 查看运行中的进程 2.4 查看输出日志 3. 总结 在机器学习和深度学习中,训练模型时经常需要使用GPU来加速计算。本文将介绍如何使用...
我有两个 GPU,想通过 ipynb 同时运行两个不同的网络,但是第一个笔记本总是分配两个 GPU。 使用 CUDA_VISIBLE_DEVICES,我可以隐藏 python 文件的设备,但我不确定如何在笔记本中这样做。 有没有办法将不同的 GP...
CUDA_VISIBLE_DEVICES=1python**.py 注意:这种设置方法一定要在第一次使用 cuda 之前进行设置 永久设置 linux: 在~/.bashrc 的最后加上export CUDA_VISIBLE_DEVICES=1,然后source ~/.bashrc windows: 打开我的电脑环境变量设置的地方,直接添加就行了。
tensorflow-gpu-1.13.1 Anaconda3-5.2.0-Windows-x86_64(对应python3.6.5) pycharm-community-2019.2.1 (pycharm用什么版本都可以,不会影响) (二)下载CUDA并安装 确定好CUDA版本后就可以开始下载了。 点击下面这个链接,点击“Legacy Releases”(旧版本) ...