image-processingsimd-programmingshared-memorycpp-librarycuda-library UpdatedApr 27, 2019 C++ eyalroz/cuda-kat Star105 Code Issues Pull requests CUDA kernel author's tools patternsalgorithmsgpuconstexprmodern-cppcudaprintfcpp11utility-librarycuda-kernelsgpu-programmingcuda-libraryelegant-codingcuda-programming...
--Utilities: cuobjdump, nvdisasm, gpu-library-advisor 2、CUDA 包括的库:(CUDA Library) --cublas (BLAS) --cublas_device (BLAS Kernel Interface) --cuda_occupancy (Kernel Occupancy Calculation [header file implementation]) cudadevrt (CUDA Device Runtime) --cudart (CUDA Runtime) --cufft (Fast ...
针对你遇到的问题“could not find cuda (missing: cuda_include_dirs cuda_cudart_library)”,这通常表明你的项目在编译时没有找到CUDA的相关路径和库。以下是一些可能的解决步骤,帮助你解决这个问题: 确认CUDA是否已经正确安装: 首先,你需要确认CUDA是否已经在你的系统上正确安装。可以通过在终端中运行nvcc --ver...
Get Started with CUDA Get started with CUDA by downloading the CUDA Toolkit and exploring introductory resources including videos, code samples, hands-on labs and webinars. Get Started with CUDADownload Now Tutorials See More News See More
CUDA accelerates applications across a wide range of domains from image processing, to deep learning, numerical analytics and computational science. More Applications Get Started with CUDA Get started with CUDA by downloading the CUDA Toolkit and exploring introductory resources including videos, code samp...
Tensors and Dynamic neural networks in Python with strong GPU acceleration - Could NOT find CUDA (missing: CUDA_CUDART_LIBRARY) (found version "12.5") · pytorch/pytorch@861bdf9
这个问题出现在编译的时候。 原因:/path/to/cuda-xx/lib64/路径下面找不到 libcublas.so 为什么找不到呢? 因为是我自己安装的cuda,在选...
“cannot initialize CUDA without aten_cuda库”错误通常是由于缺少或无法加载aten_cuda库引起的。aten_cuda库是PyTorch库的一部分,用于处理GPU加速计算相关的函数。如果缺少aten_cuda库,就会导致无法正确初始化CUDA。 解决方法 下面是一些可能的解决方法: 1. 首先,需要确保正确安装了适用于您的GPU的CUDA版本。可以通过...
CMake错误: CUDA_cublas_LIBRARY (高级) 答:CMake错误: CUDA_cublas_LIBRARY 是一个常见的构建错误,表示在使用CMake构建CUDA项目时,找不到...
=nullptr) { CHECK_CUDA(cudaFree(ptr)); } } void alloc_gpu(int n, int c, int h, int w) { this->n = n; this->c = c; this->h = h; this->w = w; this->is_gpu = true; assert(n>0&&c>0&&h>0&&w>0); size_byte = n*c*h*w*sizeof(float); is_gpu = true; ...