51CTO博客已为您找到关于cuda_visible_devices多卡设置的相关内容,包含IT学习相关文档代码介绍、相关教程视频课程,以及cuda_visible_devices多卡设置问答内容。更多cuda_visible_devices多卡设置相关解答可以来51CTO博客参与分享和学习,帮助广大IT技术人实现成长和进步。
服务器中有多个GPU,选择特定的GPU运行程序可在程序运行命令前使用:CUDA_VISIBLE_DEVICES=0命令。0为服务器中的GPU编号,可以为0, 1, 2, 3等,表明对程序可见的GPU编号。 说明 使用 临时设置 代码语言:javascript 复制 Linux:exportCUDA_VISIBLE_DEVICES=1windows:setCUDA_VISIBLE_DEVICES=1 python 运行时设置 代码...
CUDA_VISIBLE_DEVICES 环境变量设置 入门后的进一步学习的内容,就是如何优化自己的代码。我们前面的例子没有考虑任何性能方面优化,是为了更好地学习基本知识点,而不是其他细节问题。从本节开始,我们要从性能出发考虑问题,不断优化代码,使执行速度提高是并行处理的唯一目的。 测试代码运行速度有很多方法,C语言里提供了类...
1.设置只有设备0和设备1对CUDA可见: ``` $ export CUDA_VISIBLE_DEVICES=0,1 ``` 上述命令会将CUDA_VISIBLE_DEVICES环境变量设置为"0,1"。 2.设置只有设备2对CUDA可见: ``` $ export CUDA_VISIBLE_DEVICES=2 ``` 上述命令会将CUDA_VISIBLE_DEVICES环境变量设置为"2"。 3.取消对CUDA设备的可见性设置(...
在设置CUDA_VISIBLE_DEVICES时,只有其索引出现在nvidia-smi -L序列中的设备才可以设置,如果其中一个索引无效,则 CUDA 应用程序只能看到在无效索引之前的设备。例如将CUDA_VISIBLE_DEVICES设置为0,1,-1,2将导致设备 0 和 1 可见,设备 2 不可见。 环境变量CUDA_VISIBLE_DEVICES的主要用途有以下几个场景: ...
本期code:https://github.com/chunhuizhang/deeplearning-envs/blob/main/cuda_visible_devices.ipynb, 视频播放量 1929、弹幕量 2、点赞数 38、投硬币枚数 11、收藏人数 27、转发人数 2, 视频作者 五道口纳什, 作者简介 数学,计算机科学,现代人工智能。全网「五道口纳
cuda_visible_devices是一个CUDA环境变量,用于指定哪些GPU设备对CUDA应用程序(如PyTorch)可见。例如,设置CUDA_VISIBLE_DEVICES=0,2会使CUDA应用程序只能看到编号为0和2的GPU设备。 2. 查找PyTorch中重置或设置cuda_visible_devices的方法 在PyTorch中,并没有直接提供重置cuda_visible_devices环境变量的函数。但是,你可以...
CUDA_VISIBLE_DEVICES后面的参数依次是设置gpu[0],gpu[1], gpu[2]...等的device编号。 所以区别在于: 0,2,3意思是gpu[0]指向device0, gpu[1], 指向devcie2, gpu[2]指向device3; 而2,0,3意思是gpu[0]指向device2, gpu[1], 指向devcie0, gpu[2]指向device3; ...
如果使用多gpu运行程序,可以直接使用CUDA_VISIBLE_DEVICES=0,1,2,3 python xxx.py来设置该程序可见的gpu。当然也可以在程序开头设置os.environ["CUDA_VISIBLE_DEVICES"] = '0,1,2,3'来使用。 如果在pycharm中调试时,使用多gpu的话,除了直接在程序中设置os.environ["CUDA_VISIBLE_DEVICES"] = '0,1,2,3...