51CTO博客已为您找到关于CUDA_VISIBLE_DEVICES 指定多张gpu的相关内容,包含IT学习相关文档代码介绍、相关教程视频课程,以及CUDA_VISIBLE_DEVICES 指定多张gpu问答内容。更多CUDA_VISIBLE_DEVICES 指定多张gpu相关解答可以来51CTO博客参与分享和学习,帮助广大IT技术人实现成
51CTO博客已为您找到关于CUDA_VISIBLE_DEVICES 指定空闲显卡的相关内容,包含IT学习相关文档代码介绍、相关教程视频课程,以及CUDA_VISIBLE_DEVICES 指定空闲显卡问答内容。更多CUDA_VISIBLE_DEVICES 指定空闲显卡相关解答可以来51CTO博客参与分享和学习,帮助广大IT技术人实现
GPU Memory Usage:该进程的显存使用情况 2、os.environ来设置CUDA_VISIBLE_DEVICES os是python中非常常用的系统包,而os.environ则是设置查看系统环境变量的模块,我们可以通过这个模块把CUDA_VISIBLE_DEVICES的设置写入到环境变量中,这样在执行这个程序的时候就可以指定GPU运行了。 importos os.environ["CUDA_VISIBLE_DEVI...
2.1 启动第一个程序,指定使用第0号GPU 以下命令将第一个Python脚本放到后台运行,并将输出重定向到output1.log文件中: nohup bash -c"CUDA_VISIBLE_DEVICES=0 python xxx.py"> output1.log 2>&1& 2.2 启动第二个程序,指定使用第1号GPU 以下命令将第二个Python脚本放到后台运行,并将输出重定向到output2.log...
这行命令会将CUDA_VISIBLE_DEVICES设置为环境变量,使得随后在该终端会话中运行的CUDA程序只能看到并使用编号为0、1、2的GPU设备。 在Python脚本中设置: python import os os.environ["CUDA_VISIBLE_DEVICES"] = "0,1" 这段代码会在Python脚本运行之前设置环境变量,确保脚本中的CUDA操作只使用编号为0和1的GPU...
CUDA_VISIBLE_DEVICES后面的参数依次是设置gpu[0],gpu[1], gpu[2]...等的device编号。 所以区别在于: 0,2,3意思是gpu[0]指向device0, gpu[1], 指向devcie2, gpu[2]指向device3; 而2,0,3意思是gpu[0]指向device2, gpu[1], 指向devcie0, gpu[2]指向device3; ...
CUDA_VISIBLE_DEVICES=0,2,3只有编号为0,2,3的GPU对程序是可见的,在代码中gpu[0]指的是第0块儿,gpu[1]指的是第2块儿,gpu[2]指的是第3块儿 CUDA_VISIBLE_DEVICES=2,0,3只有编号为0,2,3的GPU对程序是可见的,但是在代码中gpu[0]指的是第2块儿,gpu[1]指的是第0块儿,gpu[2]指的是第3块儿 ...
这条命令适用于命令行运行tensorflow程序的时候,指定gpu. 只需要在命令之前设置环境变量,简单来说比如原本程序是命令行运行python train.py 假定这里gpu总共有八块,通过nvidia-smi查看发现5,6,7是空闲的(从0开始编号) 则运行命令修改为:CUDA_VISIBLE_DEVICES=5,6,7 python train.py...
多卡分配:在AutoModelForCausalLM加载预训练模型时,加入device_map="auto",自动分配可用显存。 设置可见显存:在python文件外部加入CUDA_VISIBLE_DEVICES=1,2,指定特定的显卡。 重要!单台机器如果有的显卡占满,有的显卡空着。加入device_map="auto",仍然会出现爆显存的情况。主要因为device_map="auto"会将模型分配...
设置CUDA_VISIBLE_DEVICES 深度学习过程中需要配置可见的显卡设备,本文记录 CUDA_VISIBLE_DEVICES 配置方法。 简介 服务器中有多个GPU,选择特定的GPU运行程序可在程序运行命令前使用:CUDA_VISIBLE_DEVICES=0命令。0为服务器中的GPU编号,可以为0, 1, 2, 3等,表明对程序可见的GPU编号。