cuda_select_nvcc_arch_flags(CUDA_ARCH_FLAGS_TMP Auto)是一个用于选择适当的 CUDA 架构标志的 CMake 函数。它会根据当前系统上可用的 GPU 架构版本自动选择合适的标志。 在CMake 构建过程中,可以使用这个函数来设置CUDA_NVCC_FLAGS变量,以确保编译生成的代码能够在目标设备上正确运行。它会将适当的架构标志添加到...
-- Autodetected CUDA architecture(s): 3.5;5.0;8.0;8.6;8.9;9.0;9.0a CMake Error at cmake/Modules_CUDA_fix/upstream/FindCUDA/select_compute_arch.cmake:225 (message): Unknown CUDA Architecture Name 9.0a in CUDA_SELECT_NVCC_ARCH_FLAGS Call Stack (most recent call first): cmake/public/utils...
set(CUDA_TOOLKIT_ROOT_DIR /usr/local/cuda-12.3) # 这里替换为CUDA路径 set(CUDA_NVCC_FLAGS ${CUDA_NVCC_FLAGS} -arch=sm_61) # 这里根据上面查找的GPU架构进行替换 # CUDA sources set(CUDA_SOURCE_FILES vector_add.cu) # C++ sources set(CPP_SOURCE_FILES main.cpp) # Add execu...
Select Target Platform Click on the green buttons that describe your target platform. Only supported platforms will be shown. By downloading and using the software, you agree to fully comply with the terms and conditions of theCUDA EULA.
哪些PTX 和二进制代码嵌入到 CUDA C++ 应用程序中由 -arch 和-code 编译器选项或 -gencode 编译器选项控制,详见 nvcc 用户手册。 例如: nvcc x.cu -gencode arch=compute_50,code=sm_50 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_70,code=\"compute_70,sm_70\" 嵌入与计算能力 5....
nvcc-arch=compute_XX-code=sm_XX... 其中,XX表示你要编译的 CUDA 架构版本号。 例如,如果你要编译针对 NVIDIA Tesla V100 GPU 的代码,你可以使用以下命令: nvcc-arch=compute_70-code=sm_70... 也可以使用以下命令缩写: nvcc-arch=sm_XX...
哪些PTX和二进制代码嵌入到 CUDA C++ 应用程序中由-arch和-code编译器选项或-gencode编译器选项控制,详见 nvcc 用户手册。 例如: nvcc x.cu -gencode arch=compute_50,code=sm_50 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_70,code=\"compute_70,sm_70\" ...
When -arch=native is specified, nvcc detects the visible GPUs on the system and generates codes for them, no PTX program will be generated for this option. It is a warning if there are no visible supported GPU on the system, and the default architecture will be used. If -arch=all is ...
-arch Specify the name of the NVIDIA GPU architecture which will remain in the object or library. --generate-code -gencode This option is same format as nvcc –generate-code option, and provides a way to specify multiple architectures which should remain in the object or library. Only the ...
nvcc 12.2.140 CUDA libraries are detected and used, generation uses 100% GPU. After installation in /usr/loca/bin/ollama there were permission issues when starting it as a service under the ollama user. I don't think that has anything to do with the code on this branch though. Still ...