用C语言写了一个三次样条插值(自然边界)的S-Function,代码如下: View Code 3. 例子 以y=sin(x)为例, x步长为1,x取值范围是[0,10]。对它使用三次样条插值,插值前后对比如下:
用C语言写了一个三次样条插值(自然边界)的S-Function,代码如下: View Code 3. 例子 以y=sin(x)为例, x步长为1,x取值范围是[0,10]。对它使用三次样条插值,插值前后对比如下:
使用TDMA求解,系数矩阵需时diagonally dominant, 即: 3. 实现代码(C语言) void tdma(float x[], const size_t N, const float a[], const float b[], float c[]) { size_t n; c[0] = c[0] / b[0]; x[0] = x[0] / b[0]; for (n = 1; n < N; n++) { float m = 1.0f ...
一般有三种边界条件:自然边界(Natural Spline),固定边界(Clamped Spline),非节点边界(Not-A-Knot Spline)。 - 自然边界 指定端点二阶导数为0,即S^{''}_0(x_0) = S^{''}_{n-1}(x_n)=0。 固定边界 人为指定端点一阶导数,这里分别定为A和B,即S^{'}_0(x_0) = A, S^{'}_{n-1}(x_n)...
三次样条插值(CubicSplineInterpolation)及代码实现(C语 ⾔)样条插值是⼀种⼯业设计中常⽤的、得到平滑曲线的⼀种插值⽅法,三次样条⼜是其中⽤的较为⼴泛的⼀种。本篇介绍⼒求⽤容易理解的⽅式,介绍⼀下三次样条插值的原理,并附C语⾔的实现代码。1. 三次样条曲线原理 假设有以下...
无人驾驶路径规划技术(1)-Cubic Spline曲线 2、Cubic Spline曲线求解 已知: a) n+1个数据点 , i = 0, 1, …, n; b) 每一分段都是三次多项式函数曲线; c) 节点达到二阶连续; d) 左右两端点处特性(自然边界,固定边界,非节点边界) 根据已知点求出每段样条曲线方程中的系数,即可得到曲线方程。
维基百科上指定的算法是自然样条曲线的代码。 编译并运行 要进行编译,您只需要在终端上键入“ make”即可。 但是,如果您已经制作过一次,则需要在第二次编译之前输入“ make clean”。 要运行它,您需要在终端上键入“ cubic-spline-interpolation”。 参考 ...
平滑算法:三次样条插值(CubicSplineInterpolation)感谢强⼤的google翻译。我从中认识到了航位推算dead reckoning,⽴⽅体样条Cubic Splines 算法。我单独查找了 Cubic Splines ,⾥⾯的原理简单说明:Cubic Splines 认为在 x 在[a, b]区间中,y对应是⼀条平滑的曲线,所以 y = f(x); 的⼀阶导函数...
三次样条插值cubicsplineinterpolation 什么是三次样条插值 插值(interpolation)是在已知部分数据节点(knots)的情况下,求解经过这些已知点的曲线,然后根据得到的曲线进⾏未知位置点函数值预测的⽅法(未知点在上述已知点⾃变量范围内)。 样条(spline)是软尺(elastic ruler)的术语说法,在技术制图中,使...
Cubic-spline-InterpolationSt**刺痛 上传80.28 KB 文件格式 zip 该代码仓库包含了一个用于计算数据点的三次样条插值的方法,通过使用Thomas算法解决TDMA。此外,还包括了拉格朗日多项式插值作为对比。三次样条插值是一种常用的插值方法,能够通过在每个相邻数据点之间拟合三次多项式来实现平滑的插值曲线。Thomas算法是一种...