1.首先通过BackBone架构网络VGG16进行特征的提取,其Conv5层输出N x C x H x W的特征图,由于VGG16的卷积网络中经过4个池化层累计的Stride为16。也就是Conv5层输出的Feature map中一个像素对应原图的16像素。 2.然后在Conv5上做3 x 3的滑动窗口,即每个点都结合周围3 x 3区域特征获取一个长度为3 x 3 x...
在训练阶段,CRNN将训练图像统一缩放为160×32(w×h);在测试阶段,针对字符拉伸会导致识别率降低的问题,CRNN保持输入图像尺寸比例,但是图像高度还是必须统一为32个像素,卷积特征图的尺寸动态决定LSTM 的时序长度(时间步长)。
本实验使用的是图像文本识别的经典算法CRNN1。CRNN是2015年被提出的,到目前为止还是被广泛应用。该算法的主要思想是认为文本识别其实需要对序列进行预测,所以采用了预测序列常用的RNN网络。算法通过CNN提取图片特征,然后采用RNN对序列进行预测,最终使用CTC方法得到最终结果。 3.1 CRNN模型结构 CRNN的主要结构包括基于CNN的...
【基于pytorch的OCR文字识别】CTPN、CRNN、卷积3D、PyTorch框架一次学完!学完就能跑通!-AI/人工智能/深度学习/pytorch共计15条视频,包括:1. OCR文字识别要完成的任务、2. CTPN文字检测网络概述、3. 序列网络的作用等,UP主更多精彩视频,请关注UP账号。
CRNN STAR-Net RARE SRN 1.4 OCR常用评估指标 (1)检测阶段:先按照检测框和标注框的IOU评估,IOU大于某个阈值判断为检测准确。这里检测框和标注框不同于一般的通用目标检测框,是采用多边形进行表示。检测准确率:正确的检测框个数在全部检测框的占比,主要是判断检测指标。检测召回率:正确的检测框个数在全部标注框的...
2. 文本区域检测网络-CTPN(CNN+RNN) 3. EndToEnd文本识别网络-CRNN(CNN+GRU/LSTM+CTC) 文字方向检测-vgg分类 基于图像分类,在VGG16模型的基础上,训练0、90、180、270度检测的分类模型. 详细代码参考angle/predict.py文件,训练图片8000张,准确率88.23% 模型地址BaiduCloud 文字区域检测CTPN 关于ctpn网络,网上有...
CTPN+CRNN结合了文本检测和识别的优点,能够实现更准确的OCR效果。Densenet是一种基于稠密连接卷积神经网络的方法,它通过增加网络的连接性来提高特征传播和信息利用率。在OCR任务中,Densenet可以更有效地提取图像特征,并提高文字识别的准确性。接下来,我们将对这三种方法进行性能比较。在准确度方面,CTPN+CRNN通常具有较...
CRNN全称为Convolutional Recurrent Neural Network,主要用于端到端地对不定长的文本序列进行识别,不用先对单个文字进行切割,而是将文本识别转化为时序依赖的序列学习问题,就是基于图像的序列识别。 整个CRNN网络结构包含三部分,从下到上依次...
采用文本识别网络CRNN+CTC。CRNN全称为卷积循环神经网络,将特征提取,序列建模以及转录整合到统一的模型框架中。主要用于端到端地对不定长的文本序列进行识别,不用先对单个文字进行切割,而是将文本识别转化为时序依赖的序列学习问题,就是基于图像的序列识别。
CRNN全称为Convolutional Recurrent Neural Network,主要用于端到端地对不定长的文本序列进行识别,不用先对单个文字进行切割,而是将文本识别转化为时序依赖的序列学习问题,就是基于图像的序列识别。 整个CRNN网络结构包含三部分,从下到上依次为: 1.CNN(卷积层):使用深度CNN,对输入图像提取特征,得到特征图; ...