在训练阶段,CRNN将训练图像统一缩放为160×32(w×h);在测试阶段,针对字符拉伸会导致识别率降低的问题,CRNN保持输入图像尺寸比例,但是图像高度还是必须统一为32个像素,卷积特征图的尺寸动态决定LSTM 的时序长度(时间步长)。
1.首先通过BackBone架构网络VGG16进行特征的提取,其Conv5层输出N x C x H x W的特征图,由于VGG16的卷积网络中经过4个池化层累计的Stride为16。也就是Conv5层输出的Feature map中一个像素对应原图的16像素。 2.然后在Conv5上做3 x 3的滑动窗口,即每个点都结合周围3 x 3区域特征获取一个长度为3 x 3 x...
CRNN中需要解决的问题是图像文本长度是不定长的,所以会存在一个对齐解码的问题,所以RNN需要一个额外的搭档来解决这个问题,这个搭档就是著名的CTC解码。我们知道,CRNN中RNN层输出的一个不定长的序列,比如原始图像宽度为W,可能其经过CNN和RNN后输出的序列个数为S,此时我们要将该序列翻译成最终的识别结果。RNN进行时...
基于LSTM(长短时记忆)网络结构,通过训练大量带有文字标签的图像数据集,使模型学会从图像中提取文字特征并识别出对应的文字。 CTPN+CRNN:CTPN是一种用于文本行检测的卷积神经网络,通过多阶段检测方法,先在图像中定位文本行,再利用CRNN(卷积循环神经网络)对定位的文本行进行识别。CRNN网络结构包括卷积层、循环层和转录...
CRNN STAR-Net RARE SRN 1.4 OCR常用评估指标 (1)检测阶段:先按照检测框和标注框的IOU评估,IOU大于某个阈值判断为检测准确。这里检测框和标注框不同于一般的通用目标检测框,是采用多边形进行表示。检测准确率:正确的检测框个数在全部检测框的占比,主要是判断检测指标。检测召回率:正确的检测框个数在全部标注框的...
通过利用keras以及一些自定义函数进行数据增强, CTPN进行文字定位,CRNN进行文字识别以及Flask Web实现银行卡号码识别 Github地址 由于我并不是机器学习方向,完成此项目只是学校课程需要 所以文章可能只是如何开始并完成这个项目,至于深层次的原理,推荐两篇中文博文 ...
【基于pytorch的OCR文字识别】CTPN、CRNN、卷积3D、PyTorch框架一次学完!学完就能跑通!-AI/人工智能/深度学习/pytorch共计15条视频,包括:1. OCR文字识别要完成的任务、2. CTPN文字检测网络概述、3. 序列网络的作用等,UP主更多精彩视频,请关注UP账号。
CRNN STAR-Net RARE SRN 1.4 OCR常用评估指标 (1)检测阶段:先按照检测框和标注框的IOU评估,IOU大于某个阈值判断为检测准确。这里检测框和标注框不同于一般的通用目标检测框,是采用多边形进行表示。检测准确率:正确的检测框个数在全部检测框的占比,主要是判断检测指标。检测召回率:正确的检测框个数在全部标注框的...
2. 文本区域检测网络-CTPN(CNN+RNN) 3. EndToEnd文本识别网络-CRNN(CNN+GRU/LSTM+CTC) 文字方向检测-vgg分类 基于图像分类,在VGG16模型的基础上,训练0、90、180、270度检测的分类模型. 详细代码参考angle/predict.py文件,训练图片8000张,准确率88.23% 模型地址BaiduCloud 文字区域检测CTPN 关于ctpn网络,网上有...
51CTO博客已为您找到关于ctpn和crnn数据集的相关内容,包含IT学习相关文档代码介绍、相关教程视频课程,以及ctpn和crnn数据集问答内容。更多ctpn和crnn数据集相关解答可以来51CTO博客参与分享和学习,帮助广大IT技术人实现成长和进步。