比如iindptr=np.array([0,2,3,6]) ,其中2 是指竖线中的0到2的数据块,即 1,2是一个数据块,再对应indices中的列值0,2,可以认定,在矩阵第一行中的数据为,1 0 2 。 同理第二个数据块为2,3 其中只有一个数据3, 对应的列值为2,那么数据应为, 0 0 3 。 最后一个数据块为3,6 对应数据为3,到...
在SciPy稀疏矩阵CSR_Matrix中保持插入顺序的方法是使用稀疏矩阵的lil_matrix格式进行插入操作,然后再将其转换为CSR_Matrix格式。 lil_matrix是一种基于行的稀疏矩阵格式,它允许按照插入的顺序逐个添加元素。具体步骤如下: 导入所需的库和模块: 代码语言:txt ...
在用python进行科学运算时,常常需要把一个稀疏的np.array压缩,这时候就用到scipy库中的sparse.csr_matrix(csr:Compressed Sparse Row marix)和sparse.csc_matric(csc:Compressed Sparse Column marix) scipy.sparse.csr_matrix 官方API介绍 csr_matrix((data, indices, indptr), [shape=(M, N)]) is the standar...
一、csr_matrix函数 from scipy.sparse import csr_matriximport numpy as np# data:代表的是稀疏矩阵中存储的所有元素data = np.array([1,2,3,4,5,6])# indices: 代表的是这6个元素所在的列的位置indices = np.array([0,2,2,0,1,2])# indptr: 游标,每一行起始元素的下标# 1 2|3|4 5 6的下...
aa = csr_matrix(orig) aa有如下属性: # 2代表第第一行有2个不为零的元素,# 3代表第第一和二行不为零的元素总共有3个# 6代表第第一、二和三行不为零的元素总共有6个indptr: array([0, 2, 3, 6], dtype=int32)# 0,2代表第一行中的位置0和2有非零元素# 2代表第二行中的位置2有非零元素...
上述官方文档时稀疏矩阵的一些特性以及csr_matrix的优缺点,并且在指明各种缺点的同时,提供了可以考虑的技术实现。 代码示例1 import numpy as np from scipy.sparse import csr_matrix row = np.array([0, 0, 1, 2, 2, 2]) col = np.array([0, 2, 2, 0, 1, 2]) ...
scipy.sparse.coo_matrix coo_matrix全称是A sparse matrix in COOrdinate format,一种基于坐标格式的稀疏矩阵,每一个矩阵项是一个三元组(行,列,值)。 该矩阵的常见构造方法有如下几种: coo_matrix(D) 举例如下: importnumpyasnpfromscipy.sparseimportcoo_matrix ...
scipy.sparse.csr_matrix.min函数用于计算压缩稀疏行矩阵(Compressed Sparse Row Matrix,CSR矩阵)中的最小值。默认情况下,该函数将考虑所有非零元素并计算最小值。然而,有时我们希望忽略掉隐式零(在CSR矩阵中表示为未显示存储的零值)。 要忽略隐式零,可以使用scipy.sparse.csr_matrix.min函数的参数min_val...
Scipy库中提供两种常用的稀疏矩阵格式:CSR(Compressed Sparse Row)和CSC(Compressed Sparse Column)。其构造方法如下:1. 确定矩阵shape,即x和y的最大值。2. 创造一个data数组,其大小与shape一致,所有元素初始化为1,表示存在交互。3. 将shape、data数组和额外的索引信息(如行索引和列索引)作为...
从Scipy用户组得到了答案:一个csr_matrix有3个数据属性此事:.data,.indices,和.indptr。都是简单的ndarray,因此numpy.save可以在它们上使用。用numpy.save或保存三个数组,用numpy.savez加载它们numpy.load,然后用以下方法重新创建稀疏矩阵对象:new_csr = csr_matrix((data, indices, indptr), shape=(M, N))...