Python每日学习,稀疏矩阵scipy.sparse 中的csr_matrix 风云亭 擅长领域 5G,V2X无人驾驶,智慧交通,云 稀疏矩阵的两种表示方法。 一、根据坐标col,以及值进行表示生成矩阵。 代码 >>> row = np.array([0, 0, 1, 2, 2, 2])>>> col = np.array([0, 2, 2, 0, 1, 2])>>> data = np.array([...
在用python进行科学运算时,常常需要把一个稀疏的np.array压缩,这时候就用到scipy库中的sparse.csr_matrix(csr:Compressed SparseRowmarix) 和sparse.csc_matric(csc:Compressed SparseColumnmarix) 官网直通车:直通车 csr_matrix 代码语言:javascript 代码运行次数:0 运行 AI代码解释 >>>indptr=np.array([0,2,3,6...
Python scipy.sparse.csr_matrix()[csc_matrix()] 本文以csr_matrix为例来说明sparse矩阵的使用方法,其他类型的sparse矩阵可以参考https://docs.scipy.org/doc/scipy/reference/sparse.html csr_matrix是Compressed Sparse Row matrix的缩写组合,下面介绍其两种初始化方法 csr_matrix((data, (row_ind, col_ind)),...
[转载链接]:python 的csr_python - 以便携式数据形式保存/加载scipy稀疏csr_matrix_weixin_39974223的博客-CSDN博客 以下是使用Jupyter笔记本的三个最受欢迎的答案的性能比较。 输入是一个1M x 100K随机稀疏矩阵,密度为0.001,包含100M非零值: from scipy.sparse import random matrix = random(1000000, 100000, dens...
在用python进行科学运算时,常常需要把一个稀疏的np.array压缩,这时候就用到scipy库中的sparse.csr_matrix(csr:Compressed Sparse Row marix)和sparse.csc_matric(csc:Compressed Sparse Column marix) scipy.sparse.csr_matrix 官方API介绍 csr_matrix((data, indices, indptr), [shape=(M, N)]) ...
Python不能自动创建稀疏矩阵,所以要用scipy中特殊的命令来得到稀疏矩阵。...(1) 压缩稀疏行(CSR,Compressed Sparse Row):或csr_matrix 按行对矩阵进行压缩的。 ...用LIL格式更改和切割矩阵: LIL格式最适合切片的方法,即以LIL格式提取子矩阵,并通过插入非零元素来改变稀疏模式。...dot,用于矩阵-矩阵或者矩...
csr_matrix(D):传入一个稠密矩阵D。 csr_matrix(S):传入一个稀疏矩阵S(得到的结果与S.tocsr()相同)。例如: graph=[[0,1,1,0,0],[0,0,1,0,0],[0,0,0,0,0],[0,0,0,0,1],[0,0,0,0,0]]graph=csr_matrix(graph)print(graph)>>>(0,1)1(0,2)1(1,2)1(3,4)1 ...
如何csr_matrix以可移植格式保存/加载稀疏稀疏?稀疏稀疏矩阵是在Python 3(Windows 64位)上创建的,以在Python 2(Linux 64位)上运行。最初,我使用pickle(协议= 2,fix_imports = True),但是从Python 3.2.2(Windows 64位)到Python 2.7.2(Windows 32位)不起作
csr_matrix函数主要是用来压缩稀疏矩阵。 一、csr_matrix函数 from scipy.sparse import csr_matriximport numpy as np# data:代表的是稀疏矩阵中存储的所有元素data = np.array([1,2,3,4,5,6])# indices: 代表的是这6个元素所在的列的位置indices = np.array([0,2,2,0,1,2])# indptr: 游标,每一...
```python import numpy as np from scipy.sparse import csr_matrix #创建CSR矩阵 data = np.array([1, 2, 3, 4, 5, 6]) row = np.array([0, 1, 1, 2, 2, 2]) col = np.array([0, 1, 2, 0, 1, 2]) csr_matrix1 = csr_matrix((data, (row, col)), shape=(3, 3)) #创...