csc2x积分等于log(tan(x))/2 + c,c为任意实数。积分是微积分学与数学分析里的一个核心概念。通常分为定积分和不定积分两种。直观地说,对于一个给定的正实值函数,在一个实数区间上的定积分可以理解为在坐标平面上,由曲线、直线以及轴围成的曲边梯形的面积值(一种确定的实数值)。基本介绍 ...
1.cscx等于1除以sinx。2.在直角三角形中,斜边和某个锐角的对边的比值叫做该锐角的余割,记作cscx。3.它和正弦的比值表达式互为倒数。
csc²x等于1/sin²x,也等于1+cot²x。解:因为cscx=1/sinx,所以csc²x=1/sin²x。而1/sin²x=(sin²x+cos²x)/sin²x =sin²x/sin²x+cos²x/sin²x =1+cot²x 即csc²x=1/sin²x=1+c...
这就是使用分部积分法,得到原积分 =x *csc^2 x -∫csc^2 xdx =x *csc^2 x + cotx +C C为常数
csc²x等于1/sin²x,也等于1+cot²x。 解:因为cscx=1/sinx,所以csc²x=1/sin²x。 而1/sin²x=(sin²x+cos²x)/sin²x =sin²x/sin²x+cos²x/sin²x =1+cot²x 即csc²x=1/sin²x=1+cot²x。 扩展资料: 1、三角函数之间的关系 tanA=sinA/cosA、cotA=cosA...
不会