一、Encoder和Decoder的作用 Encoder和Decoder是Transformer模型的两个核心组件,它们共同构成了序列到序列(seq2seq)的学习框架。Encoder的主要任务是处理输入序列,将其转换为一组内部表示(也称为编码),这些内部表示将捕获输入序列中的关键信息。Decoder则负责接收这些内部表示,并生成一个输出序列。输出序列可以是与输入序列...
Cross-Attention in Transformer Decoder Transformer论文中描述了Cross-Attention,但尚未给出此名称。Transformer decoder从完整的输入序列开始,但解码序列为空。交叉注意将信息从输入序列引入解码器层,以便它可以预测下一个输出序列标记。然后,解码器将令牌添加到输出序列中,并重复此自回归过程,直到生成EOS令牌。Cross-...
机器学习 写下你的评论... 打开知乎App 在「我的页」右上角打开扫一扫 其他扫码方式:微信 下载知乎App 开通机构号 无障碍模式 验证码登录 密码登录 中国+86 登录/注册 其他方式登录 未注册手机验证后自动登录,注册即代表同意《知乎协议》《隐私保护指引》...
本文是FasterTransformer Decoding源码分析的第六篇,笔者试图去分析CrossAttention部分的代码实现和优化。由于CrossAttention和SelfAttention计算流程上类似,所以在实现上FasterTransformer使用了相同的底层Kernel函数,因此会有大量重复的概念和优化点,重复部分本文就不介绍了,所以在阅读本文前务必先浏览进击的Killua:FasterTransforme...
In our method, a simplified feature pyramid was designed to decode the hierarchical pixel features from the backbone, and then decode the category representations into learnable category object embedding queries by cross-attention in the transformer decoder. Finally, pixel representation is augmen...
In the decoder of the transformer model, we apply cross-attention between the "memory" (encoder outputs) and "targets" (decoder inputs). For this, in the TransformerDecoderLayer, we use src_mask as mask: https://github.com/joeynmt/joeynmt/blob/master/joeynmt/transformer_layers.py#L269 ...
Transformer in Computer Vision: ViT and its Progress Transformer, an attention-based encoder-decoder architecture, has not only revolutionized the eld of natural language processing (NLP), but has also done s... Z Fu 被引量: 0发表: 2022年 An Enhanced Feature Extraction Framework for Cross-Moda...
in CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification Edit The Cross-Attention module is an attention module used in CrossViT for fusion of multi-scale features. The CLS token of the large branch (circle) serves as a query token to interact with the patch ...
I want to give a short update on EncoderDecoder models for Longformer / Reformer from my side. Given that the Reformer Encoder / Decoder code is still very researchy in teh originaltraxcode-base and thus prone to still change, we will probably wait a bit until we implement Reformer Encoder...
Methods Datasets Add Datasetsintroduced or used in this paper Results from the Paper Edit Submitresults from this paperto get state-of-the-art GitHub badges and help the community compare results to other papers. Edit AddRemove