交叉熵损失(Cross-Entropy Loss) 又称为对数似然损失(Log-likelihood Loss)、对数损失,二分类时还可称之为逻辑斯谛回归损失(Logistic Loss)。 2.1,交叉熵(Cross-Entropy)的由来 交叉熵损失的由来参考文档 AI-EDU: 交叉熵损失函数。 1,信息量 信息论中,信息量的表示方式: 《深度学习》(花书)中称为自信息(self...
在pytorch中可以调用 F.cross_entropy(input, target)来实现交叉熵损失的计算。其实分解一下就是下面的公式,先把prediction按照最后的dim求softmax,然后再求它们的log,最后,分别乘上对应的target就ok了。 loss = -label * F.log_softmax(pred, dim=-1) 1. binary_cross_entropy与cross_entropy最大的区别在于b...
2.2 交叉熵损失函数实现 在具体在Python中的实现如下: # tensorflow version loss = tf.reduce_mean(-tf.reduce_sum(y_*tf.log(y), reduction_indices=[1])) # numpy version loss = np.mean(-np.sum(y_*np.log(y), axis=1)) # pytorch version entroy=nn.CrossEntropyLoss() output = entroy(i...
2. **负对数似然损失(Negative Log Likelihood Loss)**:计算预测概率分布与真实标签之间的负对数似然损失。### 代码示例```pythonimporttorchimporttorch.nn as nn# 假设 final_output 和 final_target 已经定义好# final_output: [N, C]# final_target: [N]# 定义交叉熵损失函数criterion=nn.CrossEntropyLo...
交叉熵损失函数(Cross Entropy Loss)是一种常用的损失函数,用于多分类问题。它衡量的是预测概率分布与真实概率分布之间的差异。交叉熵值越小,表示预测概率分布越接近真实概率分布,模型的预测效果越好。 2. PyTorch中交叉熵损失函数的基本使用 在PyTorch中,交叉熵损失函数可以通过torch.nn.CrossEntropyLoss类来实现。该类...
四.交叉熵函数的代码实现 在Python中,可以使用NumPy库或深度学习框架(如TensorFlow、PyTorch)来计算交叉熵损失函数。以下是使用NumPy计算二分类和多分类交叉熵损失函数的示例代码: 代码语言:javascript 复制 importnumpyasnp # 二分类交叉熵损失函数 defbinary_cross_entropy_loss(y_true,y_pred):return-np.mean(y_tr...
除了使用`torch.nn.CrossEntropyLoss`函数外,还可以手动实现交叉熵损失函数的计算。下面是一个手动计算交叉熵的示例代码: ```python import torch import torch.nn.functional as F #设置随机种子以便结果可复现 #假设有4个样本,每个样本有3个类别 # 模型预测的概率值(未经过 softmax) logits = torch.randn(4,...
所以先来了解一下常用的几个损失函数hinge loss(合页损失)、softmax loss、cross_entropy loss(交叉熵损失): 1:hinge loss(合页损失) 又叫Multiclass SVM loss。至于为什么叫合页或者折页函数,可能是因为函数图像的缘故。 s=WX,表示最后一层的输出,维度为(C,None),LiLi表示每一类的损失,一个样例的损失是所有类...
用Python和Pytorch实现softmax和cross-entropy softmax激活函数 softmax激活函数将包含K个元素的向量转换到(0,1)之间,并且和为1,因此它们可以用来表示概率。 python: defsoftmax(x):returnnp.exp(x) / np.sum(np.exp(x), axis=0) x=np.array([0.1, 0.9, 4.0])...