torch.tensor([np.inf,np.inf])/torch.tensor([np.inf,np.inf]) inf与nan 我们算不出来 inf/inf 和 inf-inf ,机器也同样算不出来,nan是机器用来表示不能表示为数字的那些表示。 对全是inf的张量做softmax时,分母和分子部分皆为inf,inf/inf 为nan。 解决方法 分析之后可以找到两个突破口,肮脏样本和损失...
解决inf问题的方法之一,是通过在计算loss时设置参数`zero_infinity`为True,这样可以将无穷大的loss值置零,避免其对梯度产生影响。在CTC损失函数中,通过调整参数,可以实现这一功能。当将`zero_infinity`参数设置为True时,inf值会被置为0,从而避免了梯度爆炸问题。在处理包含多个损失函数融合的场景时...
CrossEntropyLoss =()−log(pi) ##语义分割任务,如果这个pixel的类别,即ground trut中的标号是4,选择p向量中第4个元素p4,再取-log , 就是这个pixel的交叉熵loss = -log(p4) ,把整张图片所有的pixel的loss求和或者求平均就是整个图片的loss。 通常这里是多张图片组成一个batch,计算一个batch即多张图所有p...
将每个类的 Dice 损失求和取平均,得到最后的 Dice soft loss。 下面是代码实现: def soft_dice_loss(y_true, y_pred, epsilon=1e-6): ''' Soft dice loss calculation for arbitrary batch size, number of classes, and number of spatial dimensions. Assumes the `channels_last` format. # Arguments ...
1. InfoNCE loss公式 对比学习损失函数有多种,其中比较常用的一种是InfoNCE loss,InfoNCE loss其实跟交叉熵损失有着千丝万缕的关系,下面我们借用恺明大佬在他的论文MoCo里定义的InfoNCE loss公式来说明。论文MoCo提出,我们可以把对比学习看成是一个字典查询的任务,即训练一个编码器从而去做字典查询的任务。假设已经有...
交叉熵损失(cross-entropy)和折页损失(Hinge loss) Cross-Entropy Loss 假设 是一对训练样本, 是训练数据, 是对于分类的one hot向量(该向量只有真实分类的参数为1,其余位数均为0)。假设通过softmax算得预测值 ,则损失表示如下: 很明显的我们看到这个损失涉及到了哪些参数,只有两个,那就预测值和真实值。这里的...
在分类问题中常用到交叉熵损失函数 CrossEntropyLoss,有时候还能看到NLLLoss损失,两个损失是有关联的。 1、首先,随机生成一个3 * 3的 tensor,假设该张量test_n是我们的神经网络的输出,一行相当于一个样本的预测结果,如下: 2、使用Softmax处理生成的tensor,这里要对每行元素进行操作,dim=1是对每行的元素进行操作...
cross entropyloss公式交叉熵损失函数(Cross Entropy Loss)公式为:L = - [y log y^ + (1 - y) log (1 - y^)]。 其中,y表示样本标签,y^表示模型预测值。交叉熵损失函数用于度量两个概率分布之间的距离,在机器学习中常用于分类问题。©2022 Baidu |由 百度智能云 提供计算服务 | 使用百度前必读 | ...
Pytorch中CrossEntropyLoss()函数的主要是将softmax-log-NLLLoss合并到一块得到的结果。 1、Softmax后的数值都在0~1之间,所以ln之后值域是负无穷到0。 2、然后将Softmax之后的结果取log,将乘法改成加法减少计算量,同时保障函数的单调性 。
cross_entropy基本代码 骑驴看代码 BML Codelab基于JupyterLab 全新架构升级,支持亮暗主题切换和丰富的AI工具,详见使用说明文档。 交叉熵损失函数(CrossEntropyLoss) 交叉熵损失函数是一种计算机学习中用来衡量两个分布之间差异的函数,是损失函数的一种,它常用于分类问题中的监督学习,它能够衡量模型的预测输出与真实输出之...