CRNN+CTC,CNN+Seq2Seq+Attention是比较流行的方式,CRNN用的会更广泛些,因为Attention机制限制会比较大些,而这两者最主要的区别也就在这,两者都抛弃了softmax,而CRNN用了CTC来最后文本对齐,而CNN用了Attention机制,这也是端到端的难点所在:如何处理不定长序列对齐问题 二:CRNN+CTC结构 CRNN(卷积循环神经网络),...
CRNN-CTC模型由卷积神经网络(CNN)、循环神经网络(RNN)和连接时序分类(CTC)三部分组成。CNN用于提取图像特征,RNN用于处理序列信息,CTC则用于实现序列到标签的映射。通过这三部分的结合,CRNN-CTC模型能够有效地识别出图像中的文字序列。在实际应用中,CRNN-CTC模型可以应用于各种场景文字识别任务,如车牌识别、广告牌文字...
在Tensorflow中官方实现了CTC接口: tf.nn.ctc_loss(labels,inputs,sequence_length,preprocess_collapse_repeated=False,ctc_merge_repeated=True,ignore_longer_outputs_than_inputs=False,time_major=True) 在Pytorch中需要使用针对框架编译的warp-ctc:https://github.com/SeanNaren/warp-ctc 2020.4更新,目前Pytorch已...
这里主要是先入个门,所以主要是研究最经典的文本识别算法(地位相当于Faster R-CNN):CRNN+CTC类型算法。 二、CRNN+CTC算法概述 基于CTC的最经典算法是CRNN(Convolutional Recurrent Neural Network)。它主要分为三个部分:图像特征提取模块CNN、图像上下文信息提取模型RNN(双向LSTM)、解码模块CTC。论文地址:An End-to...
CTC(Connectionist Temporal Classification)是在2006年的论文Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks中提出,引入了空白符号,解决了损失计算时,文字标注和网络输出之间的对齐问题。其原理比较复杂,需要专研下,参考:CTC原理理解(转载) ...
1、CTPN原理——文字检测 1.1、简介 CTPN是在ECCV 2016提出的一种文字检测算法。CTPN结合CNN与LSTM深度网络,能有效的检测出复杂场景的横向分布的文字,效果如下图,是目前比较好的文字检测算法。 CTPN算法的提出,出于以下几点: (1)、假设文本是水平的;
一文读懂CRNN+CTC文字识别 - 知乎 【Learning Notes】CTC 原理及实现_丁丁的博客-CSDN博客_ctc实现 CTC(Connectionist Temporal Classification)介绍 - PilgrimHui - 博客园 五、CRNN模型训练 在模型训练过程中,首先使用标准的CNN网络提取文本图像的特征,再利用BLSTM将特征向量进行融合以提取字符序列的上下文特征,然后得到...
一、 原理解释 1. CTPN(Connectionist Text Proposal Network]) (一)网络提出的出发点 这个网络的出发点可以从一下几个方面来介绍下。 文本检测与一般目标检测是区别的,文本检测本身是具有序列性质的。例如一些文本是有多个字以及字符构成,而不仅仅是一个个字符目标。所以我们认为这即是难点也是优势,难点在于我们需...
Convolutional Recurrent Neural Network (CRNN), 顾名思义,它是 CNN 和 RNN的结合体。最后又加了CTC。 4.1.2.CRNN模型结构 如下图所示,包括三层,从下到上分别是卷积层、RNN层、翻译层。卷积层提取图片特征。RNN层采用的是LSTM。在卷积层和RNN层中间创建了一个Map-to-Sequence层。翻译层包括两种,一种基于字典...