也就是说,普通的策略梯度算法无法解决更新步长的问题,对于普通的策略梯度方法,如果更新步长太大,则容易发散;如果更新步长太小,即使收敛,收敛速度也很慢。 Shulman并不从策略梯度的更新步长下手,而是换了一个思路:更换优化函数。通过理论推导和分析,Shulman找到一个替代损失函数(Surrogate loss),最终将强化学习策略更新步...
它特别适合处理连续动作空间,并通过引入最大熵(Maximum Entropy)强化学习的思想,解决了许多传统算法中的稳定性和探索问题。 二、SAC 背景与核心思想 1. 强化学习的挑战 探索与利用的平衡:传统算法在初期探索新策略与后期利用已有最优策略之间难以达到平衡。 不稳定性:在连续动作空间中,训练通常会出现发散或收敛缓慢的...