Crank-Nicolson差分格式广泛应用于各种偏微分方程的数值求解中,特别是热传导方程和扩散方程。它具有以下优点: - 稳定性好:Crank-Nicolson差分格式是一个隐式方法,对于稳定性要求较高的问题特别有效。 - 精度高:与显式方法相比,Crank-Nicolson差分格式具有二阶精度,可以获得更准确的数值解。 - 收敛速度快:由于其隐式...
Crank-Nicolson 格式使用了两个时间步骤,将参数因子从1改变成1/2,以节省计算量,但同时增加了计算量,因为会变为二次方程,需要求解对称矩阵。此外,由于 Crank-Nicolson 格式是一种 有限差分 数值方法,其精度与时间步长成正比,当时间步长减小时,计算量会大大增加,此时它的性能会大打折扣。 在实际应用中,Crank-...
2.2Crank-Nicolson格式 对上式偏导在进行离散, i 表示网格点,共 N+1 个, n 为求解时间步,有: {∂u∂t=uin+1−uinΔt∂2u∂y2=[12(ui+1n+ui+1n+1)−(uin+uin+1)+12(ui−1n+ui−1n+1)]Δy2 从而得到Crank-Nicolson求解格式: −Δt2ReΔy2ui+1n+1+(1+ΔtReΔ...
4.5 Crank-Nicolson 格式 本节对于定解问题 (3.1.1)∼(3.1.3)(3.1.1)∼(3.1.3) 建立一个具有 O(τ2+h2)O(τ2+h2) 精度的无条件稳定的差分格式。 注意,对各个符号取上标 k+12k+12 和取下标 k+12k+12 的意义可能各不相同,需要仔细甄别。 4.5.1 差分格式的建立 (1) 建立差分格式 我们记 tk...
编程大作业,本节为第三节:实现Crank-Nicolson格式迭代。 (声明:本系列发布的所有内容都不是官方标准答案,仅供参考) 二、作业要求 三、作业内容 下面是作业内容的图片版本,共9页。 发布于 2024-05-13 16:45・IP 属地湖南 内容所属专栏 计算物理
Crank Nico[soa类 型的 特征 差分格式 ,给 出了该格 式形成 的线性代 数方程组 可解 的一 个克分条件 t证 明 了该 格式按 离散 ∥模是收敛的 ,且其收敛 阶为 ()(血 + ^ )- 关键 词 :一维 对流 扩散 方程 ;线性 ;非线性 ;特征 差分格式 ;二 阶精度 ;收敛 性 中图分 类号 :O241 82.....
在空间方向采用四阶紧致差分格式,对双曲部分采用时间二阶的 Crank— Nicolson型特征差 分格式 ,并在 其中使用三次周期样条插值 .数值算例表明该格 式具有 比较好 的计算效果 . 关键词 对流扩散方程; 特征差分格式; 三次周期样条插值; 紧致差分格式 中图分 类号 0 241.82 文献标识 码 A doi: 10.3969/j....
用Crank-Nicolson差分格式计算抛物型方程灵=马0cx<1 盘ex 满足初始条件uLm=sinnx0<x<1和边界条件u|x」=u|x4=0t>0在 t=0.1,0.2处的解,it =k =0.1,ix =h =0.1。 2、程序 #i ncludeviostream.h> #in clude<math.h> const double pi=3.1415926; ...