method is often used, w1 The method 2 Example: 1D diffusion 3 Example: 1D diffusion with ad4 Example: 2D diffusion 5 Application in financial mathem6 See also 7 References 8 External links The method [edit] The Crank–Nicolson stencil for The Crank–Nicolson methodrule in time, giving ...
双曲型方程的Crank-Nicolson块中心差分方法 下载积分:650 内容提示: #&导镕2011.29109l$女☆女fAncl 髂双曲型方程的Crank—Ni col son块中心差分方法任宗惨.张秀春.镊召书河南师范太学敷荦与信息种学学院.河南斯9 453007抽1月Ct' ank—NtCOl s。n埭十0&0*nR7#*E《±∞&t&∞§№#^#∞&m群.&女》U...
then, letting , the equation for Crank –Nicolson method is the average of that forward Euler method at and that backward Euler method at n + 1 (note, however, that the method itself is not simply the average of those two methods, as the equation has an implicit dependence on the ...
求解一维热传导方程Crank-Nicolson差分法
Nicolson差分格式的向量表示92.5)Crank-Nicolson差分格式的稳定性112.6)Crank-Nicolson差分格式的收敛性143.数值算例173.1)利用Crank-Nicolson方法求解数值算例174.总结205.参考文献216.致谢22苏州大学本科生毕业设计(论文)1摘要本篇文章主要介绍了一维热传导方程的混合问题的第一边界值问题,并采用六点(Crank Nicolson)格式...
View Full Article (HTML) Enhanced Article (HTML) Get PDF (385K) Keywords: nonlinear parabolic system; nonlocal diffusion term; reaction–diffusion; convergence; numerical simulation; Crank–Nicolson; finite element method The aim of this article is to establish the convergence and error bounds for...
Use the Crank-Nicolson Method. We need to discretize the space and time domain. x_i = i h = i \Delta x, \quad t_n = nk = n \Delta t, \quad U^n_i \approx u(x_i,t_n) \frac{U^{n+1}_i - U^{n}_i}{k} = \frac{\kappa}{2h^2}(U^n_{i-1} - 2U^n_i + ...
Crank - Nicolson Type Method for Burgers Equation:曲柄尼科尔森型Burgers方程的方法方程,帮助,尼科尔森,crank,type,Crank,CRANK,FOR,for,反馈意见 文档格式: .pdf 文档大小: 887.75K 文档页数: 5页 顶/踩数: 0/0 收藏人数: 0 评论次数: 0 文档热度: ...
We apply the Crank–Nicolson method to a fractional diffusion equation which has the Riesz fractional derivative, and obtain that the method is unconditionally stable and convergent. Numerical results are given to demonstrate the accuracy of the Crank–Nicolson method for the fractional diffusion ...
A new Crank–Nicolson alternating direction implicit (ADI) Galerkin finite element method for the 2D-SFNRDM is developed. The stability and convergence of the numerical method are discussed. Finally, some numerical examples on 2D-SFNRDM and 2D-FFHNMM are given for verification of our theoretical ...