% Crank-Nicolson 法解一维薛定谔方程 % 等间距网格,稀疏矩阵 function TDSE_cn1d % === 参数设置 === xmin = -80; xmax = 80; Nx = 1000; % x 网格 tmin = 0; tmax = 20; Nt = 400; % 时间网格 Nplot = 10; % 画图步数 ax = [xmin, xmax, -0.5, 0.5]; % 高斯波包 x0 = -17...
Matlab:Crank Nicolson方法求解线性抛物方程 1tic;2clear3clc4M=[10,20,40,80,160,320,640];%x的步数5K=M; %时间t的步数6forp=1:length(M)7hx=1/M(p);8ht=1/K(p);9r=ht/hx^2; %网格比10x=0:hx:1;11t=0:ht:1;12numerical=zeros(M(p)+1,K(p)+1);13numerical(:,1)=exp(x); %...
Use the Crank-Nicolson Method. We need to discretize the space and time domain. x_i = i h = i \Delta x, \quad t_n = nk = n \Delta t, \quad U^n_i \approx u(x_i,t_n) \frac{U^{n+1}_i - U^{n}_i}{k} = \frac{\kappa}{2h^2}(U^n_{i-1} - 2U^n_i + ...
MATLAB Online에서 열기 ive copied the codes for Crank-Nicolson finite difference method, but it wont run and keeps showing this error msg 'Error: Function definitions are not permitted in this context.', any idea to fix this? thx guys :) Link for...
Open in MATLAB Online f is always the definition of the method you try to implement. Euler-implicit: ThemeCopy f = y_new - y_old - h*odeSystem(x(i4+1),y_new) corresponds to ThemeCopy (y_new - y_old)/h = f(x_new,y_new) Crank-Nicolson: ThemeCopy f = y_new - y_...
CEV-Option-Pricing-Crank-Nicolson 是一个使用Crank-Nicolson方法计算CEV模型下期权价格的Matlab程序。CEV模型是一种用于描述金融市场中波动率跳跃性的方法,它假设资产价格遵循一个具有跳跃过程的随机过程。在这个程序中,我们首先定义了一些参数,如无风险利率、股票价格、波动率等。然后,我们使用Crank-Nicolson方法来求解...
Da**sy上传3KB文件格式zip 使用Krank-Nicholson 方法求解抛物线方程的数值解 (0)踩踩(0) 所需:1积分 MCS51 CircleMN 2025-04-03 00:01:31 积分:1 JavaScript-compiler 2025-04-03 00:09:38 积分:1 德浓欠我钱 2025-04-03 00:18:14 积分:1 ...
Robalo. The Crank-Nicolson-Galerkin finite element method for a non- local parabolic equation with moving boundaries. Numerical Methods for Partial Differential Equations, 2014. doi: 10.1002/num.21957.Rui M. P. Almeida, Jose麓 C. M. Duque, Jorge Ferreira, and Rui J. Robalo. The Crank-...
Robalo. Convergence of the Crank-Nicolson-Galerkin finite element method for a class of nonlocal parabolic systems with moving boundaries. Available from: http://arxiv.org/abs/1401.8220, 2014.Rui M. P. Almeida, Jose´ C. M. Duque, Jorge Ferreira, and Rui J. Robalo. Convergence of the...
In this repository, the lid-driven cavity problem is solved using the Crank-Nicolson/Adams-Bashforth scheme for viscous and convection terms, respectively. For spatial discretization, the second-order central difference scheme is used in a uniform staggered grid. The projection method is used to so...