Step by step video & image solution for यदि (If) alpha = (pi)/(3), तो सिद्ध कीजिए कि cos alpha. cos 2 alpha. cos 3 alpha. cos 4 alpha. cos 5alpha. cos 6alpha = (-1)/(16) by Maths experts to help you in doubts & scoring ex...
解析:cosalpha;=-35,alpha;isin;(pi;2,pi;),所以sinalpha;=45,there4;tanalpha;=sinalpha;cosalpha;=-43.相关知识点: 试题来源: 解析 答案:-43 解析:cosalpha;=-35,alpha;isin;(pi;2,pi;),所以sinalpha;=45,there4;tanalpha;=sinalpha;cosalpha;=-43.反馈...
Step by step video, text & image solution for यदि alpha = (pi)/(7) हो, तो ((1)/(cos alpha) + (2 cos alpha)/(cos 2 alpha)) का मान ज्ञात कीजिए | by Maths experts to help you in doubts & scoring excellent marks in...
解析 由三角函数的诱导公式可得:sin(π/2-α)= cosα,sin(α+π/2)= cosα,cos(π/2-α)= sinα,tan(π/2-α)= cotα,cos(α+π/2)= -sinα,tan(α+π/2)= -cotα,故答案为cosα,cosα,sinα,cotα,-sinα,-cotα.cosα,cosα,sinα,cotα,-sinα,-cotα. ...
解析 答案见上解析:由$$ \cos ( \pi + \alpha ) = - \frac { 1 } { 2 } $$,得$$ \cos \alpha = \frac { 1 } { 2 } $$,故 $$ \cos ( \alpha - 2 \pi ) = \cos \alpha = \frac { 1 } { 2 } . $$ 反馈 收藏 ...
4 sin^(4) x+cos^(4) x=1 rArr (2 sin^(2) x)^(2) +1/4 (2 cos^(2) x)^(2)=1 or (1-cos 2x)^(2) +1/4 (1+ cos 2x)^(2)=1 or 5 cos^(2) 2x-6 cos 2x+1=0 or (cos 2x-1)(5 cos 2x-1)=0 or cos 2x=1 or cos 2x=1/5 rArr 2x=2npi or 2x=2npi pm...
【题目】已知α为钝角,$$ \cos ( \alpha - \frac { \pi } { 4 } ) = \frac { \sqrt { 2 } } { 3 } $$,求cosα. 相关知识点: 试题来源: 解析 【解析】 ∵$$ \frac { \pi } { 2 } 结果一 题目 【题目】已知a为镜角,c(-)-,求cos 答案 【解析】 2ana3,又 co(a...
Step by step video & image solution for If cos 5 alpha=cos^5 alpha, where alpha in (0,pi/2) then find the possible values of (sec^2 alpha+cosec^2 alpha+cot^2 alpha). by Maths experts to help you in doubts & scoring excellent marks in Class 12 exams. ...
( \pi + \alpha ) = \textcircled { 1 1 } \_ \_ \_ $$ 两个角的同一三角函数值的$$ \tan ( \pi + \alpha ) = \textcircled { 1 2 } $$关系$$ \sin ( \frac { \pi } { 2 } - \alpha ) = \textcircled { 1 3 } \_ $$公式五$$ \cos ( \frac { \pi } { 2...
【解析】 分析:若选用公式$$ \tan \alpha = \frac { 1 } { \cot \alpha } , \cos \alpha = \pm \frac { 1 } { \sqrt { 1 + \tan ^ { 2 } \alpha } } $$来求,必须对$$ \alpha \in ( \pi , 2 \pi ) $$分 两部分$$ \alpha \in ( \pi , \frac { 3 \pi...