sklearn提供内置函数cosine_similarity()可以直接用来计算余弦相似性。 import numpy as np from sklearn.metrics.pairwise import cosine_similarity vec1 = np.array([1, 2, 3, 4]) vec2 = np.array([5, 6, 7, 8]) cos_sim = cosine_similarity(vec1.reshape(1, -1), vec2.reshape(1, -1))...
importnumpyasnpdefcosine_similarity(vec1,vec2):dot_product=np.dot(vec1,vec2)# 计算点积norm_vec1=np.linalg.norm(vec1)# 计算向量A的模长norm_vec2=np.linalg.norm(vec2)# 计算向量B的模长cos_sim=dot_product/(norm_vec1*norm_vec2)# 计算余弦相似度returncos_sim# 示例向量及相似度计算vec1=...
>from sklearn.metrics.pairwise import cosine_similarity>>>from sklearn.metrics.pairwise import pairwise_distances>>>a=[[1,3],[2,2]]>>>cosine_similarity(a)array([[1.,0.89442719],[0.89442719,1.]])>>>pairwise_distances(a,metric="cosine")array([[0.,0.10557281],[0.10557281,0.]])>>>...
理论部分 特征降维 特征降维是无监督学习的一种应用:将n维的数据降维为m维的数据(n>m)。可应用于...
numpy模块虽无直接函数,但通过内积和向量模计算公式实现。注意,numpy仅支持numpy.ndarray类型向量。sklearn提供内置函数cosine_similarity()直接计算余弦相似性。torch模块中的cosine_similarity()函数用于计算张量的余弦相似性,仅适用于torch.Tensor类型,结果为torch.Tensor类型。
首先,scipy的spatial.distance.cosine()函数提供支持,但需注意减1后得到的是相似度。其次,numpy虽然没有直接函数,但可通过自定义公式实现,适用于numpy.ndarray类型的向量。sklearn的cosine_similarity()直接可用,对数据处理较为便利。最后,torch的cosine_similarity()适用于张量计算,提供了更丰富的张量...
* It has been a long time since I wrote the TF-IDF tutorial (Part I and Part II) and as I promissed, here is the continuation of the tutorial. Unfortunately I had no time to fix the previous tutorials for the newer versions of the scikit-learn (sklearn)
from sklearn.metrics.pairwise import cosine_similarity cos_sim_matrix = cosine_similarity(sim_matrix) create_dataframe(cos_sim_matrix,tokenized_data[1:3]) ## using the first two tokenized data So the above code can be used to measure the similarity between the tokenized document and here the...
我试图使用cosine_similarity运行KNN Classifier,但没有成功。 代码语言:javascript 复制 from sklearn.metrics.pairwise import cosine_similarity knn = KNeighborsClassifier(n_neighbors=10, metric=cosine_similarity).fit(x, y) X的形状(150个样本,4个特征): 代码语言:javascript 复制 (150, 4) Y的形状: 代...
# 需要导入模块: from sklearn.metrics import pairwise [as 别名]# 或者: from sklearn.metrics.pairwise importcosine_similarity[as 别名]defcompared(request):ifrequest.method =='POST':iflen(request.FILES) !=2:returnHttpResponse('{"status":false,"data":"","msg":"图片参数错误!"}') ...