cos(2θ)=cos2(θ)−sin2(θ)\small \cos(2\theta) = \cos^2(\theta)- \sin^2(\theta)cos(2θ)=cos2(θ)−sin2(θ) Using the Pythagorean identitysin2(θ)+cos2(θ)=1\sin^2(\theta) + \cos^2(\theta) =1sin2(θ)+cos2(θ)=1, we can substitutecos...
Rewrite1−sin(x)1-sin(x)as1−1csc(x)1-1csc(x). 1−1csc(x)1-1csc(x) Because the two sides have been shown to beequivalent, theequationis anidentity. cos2(x)1+sin(x)=1−1csc(x)cos2(x)1+sin(x)=1-1csc(x)is anidentity ...
Answer to: Verify the identity. sin x + cos x + cot x = csc x By signing up, you'll get thousands of step-by-step solutions to your homework...
Establish the identity cos + sin 0 = cos 0 - sino -1- coto 1 + tan 0 Write the left side in terms of sine and cosine. cos sin 0 1 + Write each term from the previous step as one fraction. cos 20 sin 0 - cos 0 (List the ...
ii. cos θ . 相关知识点: 试题来源: 解析 a. (sin ^2 θ)(cos ^2 θ)+(cos ^2 θ)(cos ^2 θ) 1(cos ^2 θ)tan ^2 θ+1 sec ^2 θsec ^2 θ-tan ^2 θ 1b.i. sec θ=± √6ii. cos θ=± 1(√6)反馈 收藏
Enter a problem...Algebra ExamplesPopular ProblemsAlgebraVerify the Identity sec(2x)=1/(sin(x)^2-cos(x)^2)Step 1 The provided equation is not an identity. is not an identity
Question: Verify each identity.Problem 11-cos2xsin2x=tanx Verify each identity. Problem 1 1-cos2xsin2x=tanx There are 2 steps to solve this one. Solution Share Step 1 Explanation: let given equation is 1−cos2xsin2x=tanxView the full answer Step 2 Unlock Answer Unl...
Verify the Identity (sin(x))/(sin(x)) (cos(x))/(sin(x))-(cos(x))/(cos(x))-(sin(x))/(cos(x))=sec(x)csc(x)( ((sin)(x))((sin)(x)) ((cos)(x))((sin)(x))-((cos)(x))((cos)(x))-((sin)(x))((cos)(x))=(sec)(x)(csc)(x)) 相关知识点: 试...
Answer to: Verify the trigonometric identity: cos(x - y)/sin(x) sin(y) = cot(x) cot(y) + 1 By signing up, you'll get thousands of step-by-step...
(sin ^2(-θ )-cos ^2(-θ ))(sin (-θ )-cos (-θ ))=([sin (-θ )]^2-[cos (-θ )]^2)(sin (-θ )-cos (-θ ))=((-sin θ )^2-(cos θ )^2)(-sin θ -cos θ )=((sin θ -cos θ )(sin θ +cos θ ))(-(sin θ +cos θ ))=cos θ -sin θ ...