解析 (sin θ cos φ)^2+(sin θ sin (φ ))^2+(cos )^2θ =(sin )^2θ (cos )^2φ+(sin )^2θ (sin )^2(φ )+(cos )^2θ =(sin )^2θ . ((cos )^2(φ )+(sin )^2(φ )). +(cos )^2θ =(sin )^2θ +(cos )^2θ =1 ...
(sin ^2(-θ )-cos ^2(-θ ))(sin (-θ )-cos (-θ ))=([sin (-θ )]^2-[cos (-θ )]^2)(sin (-θ )-cos (-θ ))=((-sin θ )^2-(cos θ )^2)(-sin θ -cos θ )=((sin θ -cos θ )(sin θ +cos θ ))(-(sin θ +cos θ ))=cos θ -sin θ ...
Prove that sin2+cos2=1. Pythagorean Identity The Pythagorean identity states that the square of sine of a particular angle added to the square of cosine of same angle always results in 1. The proof of this identity is based on simple geometrical interpretation of a right triangle. Answer and...
Simplify the expression as much as possible. sec^2 x sin^2 x - tan^2 x sin^2 x Use trigonometric identities to simplify the following: \frac{1 \cos^2A}{\sec^2 A - \tan^2 A} Prove the following identities. Use an identity to write the expression as a single t...
View Solution The values of θ lying between 0 and π/2 and satisfying the equation∣∣1+sin2θsin2θsin2θcos2θ1+cos2θcos2θ4sin4θ4sin4θ1+4sin4θ∣∣=0 are View Solution Free Ncert Solutions English Medium NCERT Solutions ...
2sin(45°-x)cos(45°-x)=sin(2*(45°-x)) 上式是因为倍角公式sin2x=2sinxcosx,将45°-x看成一个角. 所以sin(2*(45°-x))=sin(90°-2x)=cos2x (由正弦与余弦的关系式可得) 分析总结。 上式是因为倍角公式sin2x2sinxcosx将45x看成一个角结果一 题目 prove the identity:2sin(45'-x)cos...
解析 (sin x + sin 5x)+ (sin 2x + sin 4x)+ sin 3x LHS = (cos x + cos 5x)+ (cos 2x + cos 4x)+ cos 3x =(2sin3xcos2x+2sin3xcosx+sin3x)/(2cos3xcos2x+2cos3xcosx+cos3x) =(sin3x(2cos2x+2cosx+1)/(cos3x(2cos2x+2cosx+1))=RHS ...
Answer to: Prove the trigonometric identity \displaystyle{ \left( \sin(x) + \cos(x) \right)^2 \sin(2x) = 1. } By signing up, you'll get...
Answer to: Verify the identity. sin x plus or minus sin y / cos x + cos y = tan x plus or minus y / 2 By signing up, you'll get thousands of...
我发现它可能是a problem with PyCharm's cache。在学习了sin函数后,我直接将sin改为cos,并在不保存的情况下运行它。第2000次仍然是错误的结果。 Epoch:0/2001 Error:0.2798077795267396 Epoch: 200/2001 Error: 0.27165245260858123 Epoch: 400/2001 Error: 0.2778566883056528 ...