1.答案设u=sin2x 则du/2=cos2xdx 原方程S sinxcos2xdx变为S u du/2 得 u^2/4 +C将u换回来就得(sin(2x))^2/4+C2.我先用三角函数公式把sin2xcos2x变成0.5sin(4x)然后设u=4x 则du/4=dx进行积分原方程S 0.5sin(4x) dx变为S 0.5sin(u) du/4得 -0.5cos(u)/4 + C将U换回去化简最终...
百度试题 结果1 题目求∫dxsin2xcos2x=___. 相关知识点: 试题来源: 解析 求∫dxsin2xcos2x=∫dx14sin22x=4∫csc22xdx=2∫csc22xd2x=-2cot2x+C=-2tan2x+C.反馈 收藏
1.答案设u=sin2x 则du/2=cos2xdx 原方程S sinxcos2xdx变为S u du/2 得 u^2/4 +C将u换回来就得(sin(2x))^2/4+C2.我先用三角函数公式把sin2xcos2x变成0.5sin(4x)然后设u=4x 则du/4=dx进行积分原方程S 0.5sin(4x) dx变为S 0.5sin(u) du/4得 -0.5cos(u)/4 + C将U换回去化简最终...
sin2xcos2x的不定积分 sin(2x)cos(2x)的不定积分可以通过多种方法求解。一种常见的方法是利用三角恒等式将sin(2x)cos(2x)表示为其他三角函数的形式,然后进行积分。根据倍角公式sin(2x) = 2sin(x)cos(x)和cos(2x) = cos^2(x) sin^2(x),我们可以将sin(2x)cos(2x)表示为sin(x)cos(x)的函数。
积分强调是“对应”=Corresponding,公式不能记表面,第一题可以有三种积法,虽然表面形式不一,但是可以互化。第二题的通常积分只有一种结果。点击图片放大:
cos2x的不定积分是(1/2)sin2x+C。∫cos2xdx =(1/2)∫cos2xd2x =(1/2)sin2x+C ∫sin2xdx =1/2∫sin2xd2x =-cosx/2+C ∫cos2xdx =1/2∫cos2xd2x =sinx/2+C 解释 根据牛顿-莱布尼茨公式,许多函数的定积分的计算就可以简便地通过求不定积分来进行。这里要注意不定积分与定积分之间...
sin2x 是个复合函数 令u=2x,则y=sinu u'=2 y'=cosu =cos2x (sin2x)'=y'u'=2cos2x 所以说,sin2x积分求导等于2cos2x 知识点总结如下:1、首先要记住初等函数sinx求导等于cosx,这个是硬性记住的;2、其次复合函数求导,需要把复合函数里面的各个函数分别表示出来,然后分别求导,最后再相乘就可以得到复合...
第一步:根据正弦倍角公式,sinx*cosx=sin(2x)/2 第二步:根据余弦倍角公式,把正弦的平方化成余弦,(sinx)^2=(1-cos2x)/2 第三步:套用积分公式
你这样写是显然不对的吧,∫cos2xdx=1/2 *∫cos2x d(2x)=1/2 *sin2x +C 而∫sin2xdx=1/2 *∫sin2xd(2x)= -1/2 *cos2x +C 两个积分的式子完全不同 二者显然是不能相等的
解:原是=积分cot2xdx =1/2积分cot2xd2x =1/2x(ln/sin2x/+C)=1/2ln/sin2x/+1/2C c是常数,1/2c是常数,二者表示的是同一个概念 所以可以用C去替换1/2C 原是=1/2ln/sinx/+C(C是常数)。