【论文翻译】Bayesian graph convolutional neural networks for semi-supervised classifification 摘要 1,引言 2,相关工作 3,背景 4,方法论 5,实验结果 6,结论及未来工作摘要 近年来,将卷积神经网络应用…
本文从一篇关于通过 CNN 对自然图像进行超分辨率的论文(Image Super-Resolution Using Deep Convolutional Networks)使用深度卷积网络的图像超分辨率中获得灵感,因为全色锐化(pansharpening)本身可以被视为超分辨率的一种特殊形式,所以作者首次将卷积神经网络运用于遥感图像的全色锐化算法,效果超过了所有传统方法。证明了使用遥...
AlexNet是一个由8个神经网络层组成的深度卷积神经网络模型,用于大规模视觉识别任务。 3.1 卷积层和池化层 AlexNet使用了5个卷积层和3个池化层,每个卷积层后面紧跟一个ReLU激活函数和一个局部响应归一化(LRN)层。这些卷积层和池化层的作用是通过提取图像的特征,逐渐降低图像的分辨率和复杂性,从而使得后续的全连接层可...
The specific contributions of this paper are as follows: we trained one of the largest convolutional neural networks to date on the subsets of ImageNet used in the ILSVRC-2010 and ILSVRC-2012 competitions [2] and achieved by far the best results ever reported on these datasets. We wrote a ...
深度学习论文阅读图像分类篇(一):AlexNet《ImageNet Classification with Deep Convolutional Neural Networks》 Abstract 摘要 1.Introduction 引言 2.The Dataset 数据集 3.The Architecture 架构 3.1 非线性ReLU 函数 3.2在多 GPU 上训练 3.3局部响应归一化 ...
论文解读 《Quantized Convolutional Neural Networks for Mobile Devices》 论文地址:https://arxiv.org/abs/1512.06473 源码地址:https://github.com/jiaxiang-wu/quantized-cnn CNN网络在许多方面发挥着越来越重要的作用,但是CNN模型普遍很大,计算复杂,对硬件的要求很高,这也是限制CNN发展的一个因素。在这篇论文中,...
Graph Convolutional Neural Networks for Web-Scale Recommender Systems——论文笔记 简介 传统的深度学习网络主要针对图片,语音等欧氏空间内规则型数据;而对社交、电商和医疗等非规则结构数据则仍受到一定程度的限制。以电商场景为例,可以将用户、商品和广告等都看作节点(nodes),而将用户对于商品的购买,广告的点击等...
论文:(2015) Artificial neural networks and gene expression programing based age estimation using facial features 简述:这项研究在FG-NET数据库上实现两种不同的技术,即卷积神经网络(CNN)和基因表达编程(GEP)。仅使用在良好照明条件下拍摄的无玻璃、无模糊、无胡须和定向良好的正面图像。通过将年龄分为(0-17)、...
卷积神经网络(convolutional neural networks, CNNs)[2, 4, 15]利用类别标签学习弱监督的零件模型取得了显著的进展,这些类别标签不依赖于边界框/零件标注,因此可以大大提高细粒度识别的可用性和可伸缩性[25,31,35]。该框架通常由两个独立的步骤组成:1)通过正/负图像块[35]的训练进行局部定位,或者通过预先训练好...
输入:拓扑图(节点个数为n),以及节点的数据(维度为m) 建模:对图进行聚合,加入聚合h次,得到聚合的矩阵为,转化为矩阵的大小为(n,m,h) 得到结构化数据之后进行分类。 输出:节点分类或者回归 建模过程示例: 1.输入数据如下: