ConvNeXt-Tiny 是一种改进的卷积神经网络架构,其设计目的是在保持传统卷积神经网络优势的同时,借鉴了一些Transformer架构的成功经验。 ConvNeXt-Tiny 的优点 架构优化: ConvNeXt-Tiny 对经典ResNet架构进行了多种优化,包括调整卷积核大小、增加归一化层以及调整激活函数的使用。这些改进使得ConvNeXt-Tiny在保持计算效率的...
整体来说,ConvNeXt-Tiny模型表示在下图,训练使用AdamW优化器。 总结: ConvNeXt是一个向transformer网络靠拢的cnn模型,从作者的实验看出,每一点精度的提升都是经过大量的实验。 模型以及训练代码 训练在5分类的花数据集上在ConvNeXt-Tiny模型上准确率为92.3,在ConvNeXt-Tiny模型上准确率为93.2(可以更高,这里只训练了...
除了ResNets,作者还将KernelWarehouse应用于ConvNeXt-Tiny网络,以研究其在最先进的ConvNet架构上的性能。作者的方法在ConvNeXt-Tiny上表现出很好的泛化能力,在KW(1×)的情况下,将Baseline 模型的top-1准确率提高了0.44%。 作者进一步将KernelWarehouse应用于MobileNetV2(1.0×、0.5×)上,以验证其在轻量级ConvNet架构上...
即采用同质结构的ConvNeXt:即先通过一个patch embedding层得到输入patch的embedding,然后送入参数共享的...
ConvNeXt-T 结构图 根据源码手绘的ConvNeXt-T网络结构图,仔细观察ConvNeXt Block会发现其中还有一个Layer Scale操作(论文中并没有提到),其实它就是将输入的特征层乘上一个可训练的参数,该参数就是一个向量,元素个数与特征层channel相同,即对每个channel的数据进行缩放。Layer Scale操作出自于Going deeper with image...
-2,-1]))defforward(self,x):x=self.forward_features(x)x=self.head(x)returnxdefconvnext_tiny...
作者在ImageNet和MS-COCO数据集上验证了本文的方法,使用不同的ConvNet架构,结果显示它达到了最先进的效果。例如,在ImageNet上,使用KernelWarehouse训练的ResNet18 | ResNet50 | MobileNetV2 | ConvNeXt-Tiny模型分别达到了76.05% | 81.05% | 75.92% | 82.51%的top-1准确率。
金字塔结构 (Hierarchical Transformers) 这种卷积模型先验 (如 Swin-T, PVT 等) 的引入解决了这一问题,使得 ViT 可以被用做其他视觉任务的骨干网络。Swin Transformer 使得 "滑动窗口" 策略被重新引入 Transformer 模型,使它们的行为更类似于卷积模型。Swin 的成功也揭示了卷积的本质并没有变得无关紧要。相反,它仍...
将bottleneck中的3x3卷积替换成dw conv,再把网络宽度从64提升到96。 3. 反瓶颈结构(80.5-80.6) 在标准ResNet中使用的bottleneck是(大维度-小维度-大维度)的形式来减小计算量。后来在MobileNetV2中提出了inverted bottleneck结构,采用(小维度-大维度-小维度)形式,认为这样能让信息在不同维度特征空间之间转换时避免压...
().__init__() cfg = get_config(cfg_file) self.backbone = build_backbone(cfg.model.architecture) self.head = build_head(cfg.model.head) def forward(self, x): x = self.backbone(x) x = self.head(x) return x cfg_file = "configs/convnext/convnext_tiny_224.yaml" m = Model(cfg...