ConvLSTM在LSTM的基础上引入了卷积操作。传统的LSTM使用全连接层处理输入数据,而ConvLSTM则采用卷积层来处理空间数据。这样,ConvLSTM能够更好地捕捉输入数据中的空间特征。 ConvLSTM网络结构图 2.2.1 ConvLSTM的结构 ConvLSTM的单元结构与LSTM非常相似,但是在每个门的计算中使用了卷积操作。具体来说,ConvLSTM的每个门的公式...
importtorch.optimasoptim# 初始化模型和优化器model=ConvLSTMCell(input_dim=1,hidden_dim=64,kernel_size=3)criterion=nn.CrossEntropyLoss()# 假设任务是分类optimizer=optim.Adam(model.parameters(),lr=0.001)forepochinrange(10):# 假设训练10个epochfordata,targetintrain_loader:optimizer.zero_grad()# 清空...
其中的 o 表示hadamard乘积,其实就是矩阵相乘,相当于全连接神经网络(一层全连接网络就是相当于一个矩阵相乘),全连接网络参数量巨大,不能有效提取空间信息,把它换为卷积之后则能有效提取空间信息(花书中使用卷积层替代全连接层的动机),于是把hadamard乘积改为卷积。 于是就有了ConvLSTM 再来两幅图片来形象的表示一下...
qihang-dai/ConvLSTM-on-TIANCHI-CIKM-2017 Star8 Convolutional LSTM CNN for Rain predication. Customzied for CIKM2017 dataset deep-learningcnnconvlstm-pytorchrainprediction UpdatedMar 1, 2022 Python claudiom4sir/BiConvLSTM_Pytorch Star7 Implementation of Bidirectional ConvLSTM in Pytorch ...
ConvLSTM-PyTorch/encoder.py/ Jump to jhhuang96modify header Latest commit701bb3eMar 9, 2020History 1contributor 69 lines (60 sloc)2.38 KB RawBlame #!/usr/bin/env python # -*- encoding: utf-8 -*- ''' @File : encoder.py @Time : 2020/03/09 18:47:50 ...
ConvLSTM-Pytorch ConvRNN cell Implement ConvLSTM/ConvGRU cell with Pytorch. This idea has been proposed in this paper:Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting Experiments with ConvLSTM on MovingMNIST Encoder-decoder structure. Takes in a sequence of 10 moving...
class ConvLSTMCell(nn.Module): """ Generate a convolutional LSTM cell """ def __init__(self, input_size, hidden_size): super(ConvLSTMCell, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.Gates = nn.Conv2d(input_size + hidden_size, 4 * hidden...
如果基于 PyTorch 的 ConvLSTM 预测出现了一片空白的情况,可能有以下原因:数据预处理不当:ConvLSTM 是...
ConvLSTM接口增权重初始化和forward实现 ConvLSTM测试结果 PyTorch自带LSTM实现分析 PyTorch中的所有层的实现都是首先在nn.modules.*中进行定义、参数说明和参数初始化,然后通过其定义的backend调用nn._functions.*中的具体实现,在 PyTorch(二)——搭建和自定义网络中也是通过这种顺序增加自定义的损失函数。(ps:这应该是...
super(ConvLSTMCell, self).__init__() self.input_dim = input_dim self.hidden_dim = hidden_dim self.kernel_size = kernel_size self.padding = kernel_size[0] // 2, kernel_size[1] // 2 self.bias = bias self.conv = nn.Conv2d(in_channels=self.input_dim + self.hidden_dim...