【题目】Determine the convergence or divergence of each series.∑_(n=0)^∞(n^33^(n+1))/(4^n) All the terms of the given series are positive so we can do without theabsolute value signs.lim_(x→0)(a_(n+1))/(a_n)=((n(1))/(n^(+1)))∈[(n(x-1))/(n^∞)]^n =n...
【解析】∑_(n=1)^∞n/(n^2+1)=n ∑_(n=1)^∞n/(n^2+1)was the series in Example 4 e) for which the nth termdivergencetest wa inconclusive because lim=0. The functionnn+1Xf()=x2+1satisfies the conditions of the integral test The methodof u-substtution willbe usefulto evaluat...
百度试题 结果1 题目Determine the convergence or divergence of the series. 相关知识点: 试题来源: 解析 Diverges 反馈 收藏
In which of the following series can the convergence or divergence be determined by using the Limit Comparison Test with ∑limits _(n=1)^(∞ ) 1(n^2)? ( ) A. ∑limits _(n=1)^(∞ ) (5n)(2n+4) B. ∑limits _(n=1)^(∞ ) (5n)(2n^2+4) C. ∑limits _(n=1)^(∞ ) ...
In Section 5.2, we examine various tests for convergence so that we can determine whether a given series converges or diverges without evaluating the limit of its partial sums. Our particular emphasis will be on divergence tests, and series of nonnegative numbers, and harmonic p -series. In ...
百度试题 结果1 题目Use the Root Test to determine the convergence or divergence of the series.∑limits_(n=1)^∞((2n+1))^n 相关知识点: 试题来源: 解析 Converges 反馈 收藏
Determine convergence or divergence of the series: {eq}\displaystyle \sum_{k=6}^{\infty} \frac{4}{\sqrt{k}} {/eq} {eq}P{/eq}-Series Test: The {eq}p{/eq}-series test is applied whenever the series whose convergence we need is of the following form: ...
Convergence and divergence of a series in math follows some specific rules. Learn the rules as well as the geometric series convergence test. Also...
百度试题 结果1 题目Determine convergence or divergence of the alternating series.∑ _(n=1)^(∞ )\:((-1)^n)(n^(7/4)) ( ) A. Converges B. Diverges 相关知识点: 试题来源: 解析 A 反馈 收藏
横轴是时间吗?那这两条线的趋势叫converge不叫divergence。还是说这里的divergence只是单指短期的时间点上industrial sector和healthcare sector的spread差距变大添加评论 0 0 1 个答案 已采纳答案 发亮_品职助教 · 2024年03月22日 嗨,爱思考的PZer你好: 这不是一个Time-series的曲线,并非展示随着时间的流逝...