《ConvStencil:突破高性能计算与人工智能的“软硬”边界》 在深度学习中,矩阵乘法(MM)扮演着核心角色,目前,很多先进的处理器中都增加了专用单元来进行计算加速。相比于深度学习模型中相对标准化的矩阵乘法操作,高性能计算(HPC)中的计算模式更加复杂多样。长期以来,高性能计算和深度学习的研究在“软”(算法)“硬”(硬...
HPHEX|[SC'24]LoRAStencil: 当大模型中的LoRA技术映射到Tensor Cores上的Stencil科学计算 4041 1 9:00 App 【HPC+AI4Science】1. 大规模并行科学计算的下一步?Cloud4Science新范式。 1080 2 30:57 App HPHEX|[ICML'23 Paper Reading] Deja Vu:高效大模型推理时的上下文稀疏性 891 -- 31:51 App HPHEX...
git clone https://github.com/microsoft/ConvStencil.git CompileUse the following commands:mkdir -p build cd build cmake .. make all -j24 UsageYou can run convstencil in the following input format.convstencil_program shape input_size time_interation_size options ...
We read every piece of feedback, and take your input very seriously. Include my email address so I can be contacted Cancel Submit feedback Saved searches Use saved searches to filter your results more quickly Cancel Create saved search Sign in Sign up Reseting focus {...
Hi, I'm puzzled by the speed of vslsconv. I'm trying to convolve a 1000 by 1000 image with a10 by 10 (or smaller) stencil. Appropriate FFT algorithms
We're trying to honestly compare MKL-implementations of basic imaging techniques with CUDA-based implementations for hardware selection. The 1000 by 1000 image convolution with a 10 by 10 stencil is one of the most convincing demos in CUDA (and, by the way, boils everything down to a 1024 ...