Contrastive Language-Image Pre-training(CLIP)[1] 技术由 OpenAI 团队在 ICML 2021 提出,这是一个非常符合 Open AI 大力出奇迹的工作风格。根据谢赛宁教授在智源大会上的分享 [2],目前大多数多模态大模型都采用了 CLIP 预训练的视觉编码器,足见 CLIP 的广泛影响力。本篇博文对 CLIP 的核心技术原理进行梳理和...
也被叫做 CLIP (Contrastive Language Image Pretraining) 作者:OpenAI 发表:ICML 2021 文章地址:Learning Transferable Visual Models From Natural Language Supervision 代码地址:github.com/OpenAI/CLIP 视频解读:CLIP 论文逐段精读【论文精读】_哔哩哔哩_bilibili 1 标题、摘要、结论、简介重点 一句话总结: 文章提出...
temporal structure of the sequence of frames as well as the sequence model of the generated sentences, i.e. a language model. We evaluate several variants of our model that exploit different visual features on a standard set of YouTube videos and two movie description datasets (M-VAD and ...
Zeng, Yihan, et al. "CLIP2: Contrastive Language-Image-Point Pretraining from Real-World Point Cloud Data." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023. 作者单位:华为诺亚方舟实验室 香港科技大学 香港中文大学 中山大学 paper:https://openaccess.thecvf.co...
contrastive languageimage pre-training Contrastive Language-Image Pre-training (CLIP) is a significant advancement in the field of artificial intelligence, particularly in the area of multimodal learning, where models learn to understand and relate information across different modalities, such as text and...
CLIP is a gigantic leap forward, bringing many of the recent developments from the realm of natural language processing into the mainstream of computer vision: unsupervised learning, transformers, and multimodality to name a few. The burst of innovation it has inspired shows its versatility. And th...
SUPERVISION EXISTS EVERYWHERE: A DATA EFFICIENT CONTRASTIVE LANGUAGE-IMAGE PRE-TRAINING PARADIGM 近年来,大规模对比语言图像预训练(CLIP)因其令人印象深刻的zero-shot识别能力和良好的下游任务转移能力而引起了前所未有的关注。然而,CLIP非常需要数据,需要400M图像-文本对进行预训练。这项工作提出了一种新的训练范式...
model.encode_image(image: Tensor) Given a batch of images, returns the image features encoded by the vision portion of the CLIP model. model.encode_text(text: Tensor) Given a batch of text tokens, returns the text features encoded by the language portion of the CLIP model. model(image: ...
CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pairs. It can be instructed in natural language to predict the most relevant text snippet, given an image, without directly optimizing for the task, similarly to the zero-shot capabilities...
CLIP (Contrastive Language-Image Pre-training) is a very recent multi-modal model that jointly learns representations of images and texts. The model is trained on a massive amount of English data and shows impressive performance on zero-shot classification tasks. Training the same model on a diff...