这种曲面又称之为等值曲面,因为曲面上的每个点都满足 F(x, y, z) = 0 这一条件。Mathematica 提供了绘制等值曲面的函数 ContourPlot3D。不过在这篇文章里,我们并不用它来绘制各种婀娜多姿的曲面,而是尝试用它探索、绘制一些"多面体"。 从最简单的开始 让我们从最简单的,大家耳熟能详的球面方程开始: 方程x^2...
ContourPlot3D[f, {x, xmin, xmax}, {y, ymin, ymax}, {z, zmin, zmax}] 生成关于 x、y 和 z 的函数 f 的三维等高图. ContourPlot3D[f == g, {x, xmin, xmax}, {y, ymin, ymax}, {z, zmin, zmax}] 绘制 f = g 的等值面. ContourPlot3D[..., {x, y, z} \[Element] ...
解析 Mathematica是区分大小写的,你的语句里有一个小x写成了大X,要改回来ContourPlot3D[{(x2 + (9 y2)/4 + z2 - 1)3 - x2 z3 - (9 y2 z3)/80 == 0}, {x, -3, 3}, {y, -3, 3}, {z, -3, 3}]这样就能画了反馈 收藏 ...
ax.set_xlabel('X')ax.set_ylabel('Y')ax.set_zlabel('Z')# 显示图形 plt.show() x和y数组分别表示等高线图的x和y轴数据范围。通过使用np.linspace函数在指定范围内生成100个均匀分布的数据点。 创建了一个3D图形对象,并将其添加到子图中。 使用ax.contour3D函数绘制了3D等高线图。 x_mesh、y_mesh和z...
ContourPlot3D[x^2+y^2-z^2==0,{x,-a,a},{y,-b,b},{z,-c,c}]ContourPlot3D[x^2+y^2-z^2=0,{x,-a,a},{y,-b,b},{z,-c,c}]ContourPlot[x^2+y^2-z^2=0,{x,-a,a},{y,-b,b},{z,-c,c}]ContourPlot3D[x^2+y^2-z^2==0,{z,-a,a},{x,-b,b...
首先,这个可以使用SliceContourPlot3D:SliceContourPlot3D[\[Phi], z == 0, {x, 0, a}, {y, 0, b}, {z, 0, 1}, PlotPoints -> 35, Contours -> 40, ColorFunction -> Hue, PerformanceGoal -> "Quality"]这个函数是版本10以后才有的,不过看起来好像效果不是特别好茶...
ListContourPlot3D[farr] 根据数组 farr 生成一个等高线图,其于点 {k, j, i} 处的值为 farr[[i, j, k]]. ListContourPlot3D[{{x1, y1, z1, f1}, {x2, y2, z2, f2}, ...}] 根据点 {xi, yi, zi} 处的数值 fi 生成一个等高线图.
按F1,看帮助里面写的很多了 Plot3D函数就是画一个二元函数,第三个坐标表示函数值,画出来是浸入三维的二维曲面,俯视就和ContourPlot效果一样了 想不出还有什么可说的
I'm working with a 3D data set in MATLAB where two planes (y1 and y3) have 65 rows and 4 columns each. The third plane (y2) has only 26 rows and 4 columns. I need to create a contour plot where missing values in y2 are treated as zeros. (raw data attached) ...
You can plot contours of V at the coordinates (x, y, z) by following the below mentioned workaround: Use scatteredInterpolant to interpolate the scattered data onto a regular grid. Then, plot the 3D contour slices of V using ...