conda和Virtualenv都是用来创建和管理Python虚拟环境的工具,有着相似的命令行接口,不同之处在于: Conda是一个多语言、跨平台的虚拟环境管理器,而Virtualenv则只用于Python。 通过Conda可以管理(安装、升级)Python版本,而virtualenv则没有这个能力。 缺省安装下,conda会占用大约100MB的磁盘空间,而virtualenv则只需要占用更...
1、方式一:通过配置Conda Environment来接入python解释器,推荐 File -> Settings -> Python Interpreter -> Add Interpreter -> Add Local Interpreter -> Conda Environment 2、方式二:通过配置VirtualenvEnvironment来接入python解释器 File -> Settings -> Python Interpreter -> Add Interpreter -> Add Local Interpr...
conda install -n python2.7 pandas#将pandas安装在环境python2.7中 当前环境包更新 conda update PACKAGE_NAME conda update pandas 指定环境包更新 conda update -n ENV_NAME PACKAGE_NAME 包卸载 conda remove/uninstall PACKAGE_NAMEremove和uninstall都可以 conda remove pandas 4、环境environment管理 查看已经...
如何指定conda (在environment.yml中)使用pip安装opencv-contrib-python,同时指定CMAKE_ARGS。基本上,我如何在environment.yml文件中指定conda来运行此命令 CMAKE_ARGS="-DOPENCV_ENABLE_NONFREE=ON" pip install --no-binary=opencv-contrib-python o 浏览57提问于2021-04-11得票数 1 回答已采纳 3回答 conda ...
选择创建环境【Generate new】,选择【Conda】,自己选定 Python 版本【Python version】,设置环境名【...
environment : None user config file : /home/ma-user/.condarc populated config files : /home/ma-user/.condarc conda version : 4.8.2 conda-build version : not installed python version : 3.7.6.final.0 virtual packages : __glibc=2.27 base environment : /home/ma-user/anaconda3 (writable) ...
在命令行输入python出现“Warning:This Python interpreter is in a conda environment, but the environment has not been activated. Libraries may fail to load. To activate this environment please see https://conda.io/activation” 【解决方法】
在使用conda环境时,有时在命令提示符(CMD)中输入python会出现“Warning: This Python interpreter is in a conda environment, but the environment has not been activated”的警告信息。这个警告通常意味着conda环境尚未被激活,但你正在尝试使用它。以下是解决这个问题的步骤:步骤1:确保已安装Anaconda或Miniconda首先,...
Python 3.11 or higher is required. First, we recommend usinguvto setup the Python environment. uv venv --python 3.11 and activate it with: source .venv/bin/activate Install the dependencies: uv pip install -r requirements.txt Then install playwright: ...
"meson-python==0.13.1", "meson==1.2.1", "wheel", "Cython==3.0.5", # Note: sync with setup.py, environment.yml and asv.conf.json # Any NumPy version should be fine for compiling. Users are unlikely # to get a NumPy<1.25 so the result will be compatible with all relevant ...