自动图像字幕的任务是产生能正确反映图像视觉内容的自然语言(通常是句子)。 到目前为止,最常用于此任务的资源是,其中包含约120,000张图像和5路图像标题注释(由付费注释者生成)。 Google的“概念字幕”数据集包含超过300万张图像,以及自然语言字幕。 与MS-COCO图像的精选样式相比,Conceptual Captions图像及其原始描述是...
We present a new dataset of image caption annotations, Conceptual Captions, which contains an order of magnitude more im- ages than the MS-COCO dataset (Lin et al., 2014) and represents a wider variety of both images and image caption styles. We achieve this by extracting and filtering im...
Download Conceptual Captions Data Place data from:https://ai.google.com/research/ConceptualCaptions/downloadin this folder Train_GCC-training.tsvTraining Split (3,318,333) Validation_GCC-1.1.0-Validation.tsvValidation Split (15,840) Test Split (~12,500) human approved image caption pairs is not...
Add a description, image, and links to the conceptual-captions topic page so that developers can more easily learn about it. Curate this topic Add this topic to your repo To associate your repository with the conceptual-captions topic, visit your repo's landing page and select "manage to...
We take a step further in pushing the limits of vision-and-language pre-training data by relaxing the data collection pipeline used in Conceptual Captions 3M (CC3M) [70] and introduce the Conceptual 12M (CC12M), a dataset with 12 million image-text pairs specifically meant to be used for...
Show, Control and Tell: A Framework for Generating Controllable and Grounded Captions 原文地址 时间:2019 CVPR Intro 当前的多数Image caption模型缺少可控性(controllability)和可解释性(explainablity),这使得它与人类智能不同,因为人类能够选择各种描述图片的...猜...
Conceptual Captions is a new dataset consisting of ~3.3M images annotated with captions. In contrast with the curated style of other image caption annotations, Conceptual Caption images and their raw descriptions are harvested from the web, and therefore represent a wider variety of styles. More pr...
CC3M更简洁,更适合微调,但也可以与CC12M一起用于预训练,论文说明了这一点。巧合的是,它们的交集并不为零--大约有 63K 个 URL。 联系我们 如果您有上述常见问题解答中没有的问题,或者您想分享反馈或报告问题,请发送电子邮件至 conceptual-captions@google.com。
zahid-isu / spatialCLIP Public forked from vinid/neg_clip Notifications Fork 0 Star 0 Files main .github docs CLIP.png Interacting_with_open_clip.ipynb clip_conceptual_captions.md clip_loss.png clip_recall.png clip_val_loss.png clip_zeroshot.png effective_robustness.png laion2b_clip_...
This is code by TTIC+BIU team for conceptual captions challenge. This code shares highly with self-critical.pytorch. The modified parts are: the json file in coco-caption is replaced by conceptual one. providing links for pretrained features and preprocessed files. Only test by docker Image: Do...