Cavity magnonics(Ref. 10) is the interdiscipline of magnonics and cavity quantum electrodynamics (CQED). One of the applications of CQED is to realize quantum information processing by manipulating photon–matter interaction. A typical configuration in cavity magnonics is a microwave cavity with magnets...
CPUs that support dual-socket operation have either six or eight memory channels per CPU, for a total of 12 or 16 channels, thus such systems will have 96 GB RAM at a minimum, so these systems are primarily for solving very large models or for many models in parallel. Upgrading to a 4...
You can also integrate any derived quantity over domains, boundaries, and edges to compute, for example, the heat dissipated inside of lossy materials or the total electromagnetic energy within a cavity. Of course, there is a great deal more that you can do, and here we have just looked at...
without using theFluid-Structure Interactioninterface at all. This is demonstrated in theFluid-Structure Interaction in Aluminum Extrusion example. Additionally, if you are dealing with a very high-speed flow and are not interested in the short time-span chaotic oscillations in the flow, then...
While you watch your lunch get heated up inside a microwave oven, you don’t worry about the microwave radiation heating up your eyeballs along with your food. The microwave oven cavity and the front window screen block the 2.45-GHz electromagnetic waves that contribute to the temperature rise...
They then used their data to set up an accurate model recreating the standard test of the electrical oven in COMSOL Multiphysics. The model was created to enable parametric analyses of the glass emissivity, cavity wall dimensions and material properties, and heating elements design. ...
When sound propagates in structures and geometries with small dimensions, the sound waves become attenuated because of thermal and viscous losses. More specifically, the losses occur in the acoustic thermal and viscous boundary layers near the walls. This known phenomenon needs to be considered to ...
Modeling a Lid-Driven Cavity in COMSOL Multiphysics® The lid-driven cavity consists of a square cavity filled with fluid. At the top boundary, a tangential velocity is applied to drive the fluid flow in the cavity. The remaining three walls are defined as no-slip conditions; that is, the...
Application: Natural Convection in a Square Cavity For our example, we will use a model that couples the Navier-Stokes equations and the heat transfer equations to model naturalconvectionin a square cavity with a heated wall. The temperature on the left and right walls is 293 K and 294 K,...
Let’s consider a rectangular air-filled cavity. If this cavity is heated on one of the vertical sides and cooled on the other, then there will be a regular circulation of the air. Similarly, there will be air circulation if the cavity is heated from below and cooled from above. These ...