P. Dollar, and C. L. Zitnick, “Microsoft COCO: Common objects ´ in context,” inECCV, 2014. [20] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense two-frame stereo correspondence algorithms,”IJCV, vol. 47, no. 1-3, pp. 7–42, 2002. [21] S. Baker, D....
制作自己的物体检测数据集---MS COCO: Common Object in Context笔记,程序员大本营,技术文章内容聚合第一站。
和ImageNet对比,COCO有更少类别,但每个类别有更多实例,更有利于目标的定位 和ImageNet、VOC、SUN相比,该数据集每个类别都有更多实例,更关键的是每张图中实例更多,有利于学习目标间的关系 和ImageNet相比、VOC相比,该数据集每张图里的实例更多;SUN一张图里的实例则比该数据集高,但整体上数据集中的实例更少。 相...
MS COCO 数据集学习笔记(Common Objects in COntext) 一、数据来源 COCO中图片资源均引用自Flickr图片网站 二、数据集创建目的 进行图像识别训练,主要针对以下三个方向: (1)object instances (2)object keypoints (3) image captions 每个方向均包含训练和验证集两个标注文件 三、标注体结构 三个方向均共享基本类型...
common objects in their natural context. Objects are labeled using per-instance segmentations to aid in precise object localization. Our dataset contains photos of 91 objects types that would be easily recognizable by a 4 year old. With a total of 2.5 million labeled instances in 328k images,...
We present a new dataset with the goal of advancing the state-of-the-art in object recognition by placing the question of object recognition in the context of the broader question of scene understanding. This is achieved by gathering images of complex ev
Microsoft COCO: Common Objects in Context Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollar, Larry Zitnick ECCV|September 2014 Published by European Conference on Computer Vision Publication
COCO数据集:本数据集包含了91种物体类型的图像,这些物体类型能够被4岁大小的孩子豪不费力的识别出来。数据集有32.8万张图片,包含有250万个标注实例。 标注工具:Microsoft自研 类别确定 使用多个数据源来建立顶层物体类别: 1、首先联系PASCAL VOC数据集的类别, 2、1200种最经常见到的视觉可分辨的物体的一个子集(来自...
MS COCO - Common Objects in Contenxt COCO全称是Common Objects in Contenxt,由微软研究院和几位高校老师合作发布的图像数据集。最早的版本是2015年发布,2107年发布了新的版本。 各个版本的记录数如下: 年份(年)数据集类型记录数(万张)大小(GB) 2014训练集8.313...
Microsoft COCO: Common Objects in Context Tsung-Yi Lin Michael Maire Serge Belongie Lubomir Bourdev Ross Girshick James Hays Pietro Perona Deva Ramanan C. Lawrence Zitnick Piotr Doll ´ ar Abstract—We present a new dataset with the goal of advancing the state-of-the-art in object recognition...