phage DNA or other DNA molecules that are able to replicate in a host cell. These vectors may have a selectable marker and any necessary expression control sequences. Such control sequences include, for example, promoters that allow for expression of...
Premature termination codons (PTCs) are responsible for 10–15% of all inherited disease. PTC suppression during translation offers a promising approach to treat a variety of genetic disorders, yet small molecules that promote PTC read-through have yielded mixed performance in clinical trials. Here w...
Single nucleotide polymorphisms (SNPs) constitute the most common type of genetic variation in humans. SNPs introducing premature termination codons (PTCs), herein called X-SNPs, can alter the stability and function of transcripts and proteins and thus are considered to be biologically important. Initi...
Although expression of the truncated mRNA caused enhanced amino acid transport and viral receptor activities, the AUG codon nearest to its 5′ end is flanked by nucleotides that are incompatible with translational initiation and the next in-frame AUG codon is far downstream toward the end of the ...
Nc-tRNAs have anticodons, which are complementary to only two of the three positions of a nonsense codon in mRNA. The recent studies indicate, that the interaction between PTC and a nc-tRNA anticodon occurs by mispairing at either position 3 or 1 of the stop codon (Roy et al., 2015; ...
Just as with natural stop codons, UAA, UAG, and UGA are the three types of codons that are able to give rise to PTCs. The emergence of such premature stop codons in mRNA can occur at different levels (DNA, RNA) related to gene expression [10]. 1.1.1. DNA Level PTC can be introduc...
(NV) showed translational readthrough activity in nonsense-related in vitro systems. In this work, the possible off-target effect of NV molecules on natural termination codons (NTCs) was investigated. Two different in vitro approaches were used to assess if the NV molecule treatment induces NTC ...