foriinrange(len(ip)): print(ip[i]) First of all, when the main function executes, the user will input a list of numbers. The main function then calls the ‘Radix’ function to begin the process of radix sort. In
Radix Sort Complexity Time Complexity Best O(n+k) Worst O(n+k) Average O(n+k) Space Complexity O(max) Stability Yes Since radix sort is a non-comparative algorithm, it has advantages over comparative sorting algorithms. For the radix sort that uses counting sort as an intermediate stable...
for (int j = 0; j < i; j++) { sortarray[L+j] = extra[j] ; } } template <typename T> void merge_sort(T& sortarray, int L ,int R) { if (L >= R) return; int mid = L + ((R - L) >> 1); merge_sort(sortarray, L, mid); merge_sort(sortarray, mid + 1, R)...
As described above, this method is useful for radix sort if the keys are kept in sorted order (they aren’t in my example). As with normal DFS, we can traverse the tree preorder, inorder or postorder. You can see from my example that I traverse as far left as possible until the ...
classSolution{publicintmaximumGap(int[]nums){int n=nums.length;if(n<2){return0;}long exp=1;int[]buf=newint[n];int maxVal=Arrays.stream(nums).max().getAsInt();while(maxVal>=exp){int[]cnt=newint[10];for(int i=0;i<n;i++){int digit=(nums[i]/(int)exp)%10;cnt[digit]++;}...
public class BubbleSort{ public static void sort(int[] arr){ for(int i=0;i<arr.length-1;i++){ for(int j=arr.length-1;j>i;j--){ if(arr[j]<arr[j-1]){ swap(arr,j-1,j); } } } public static void swap(arr,i,j){ ...
public static int[] radixSort(int[] array) { //先获取最大数 int maxElement = array[0]; for (int anArray : array) { if (anArray > maxElement) { maxElement = anArray; } } //计算其对应的位数 int maxDigit = 0; while (maxElement != 0) { ...
nums[:] = [num for g in range(10) for num in buckets[g]] w *= 10 buckets.clear() def maximumGap(self, nums: List[int]) -> int: n = len(nums) if n < 2: return 0 self.radixSort(nums) return max(nums[i] - nums[i-1] for i in range(1, n)) ...
for (int j = 0; j < array.length - 1 - i; j++) if (array[j + 1] < array[j]) { int temp = array[j + 1]; array[j + 1] = array[j]; array[j] = temp; } return array; } 2、选择排序(Selection Sort) ①基本思想:选择排序(Selection-sort)是一种简单直观的排序算法。它的...
Radix SortΩ(nk)θ(nk)O(nk)O(n + k) Count SortΩ(n +k)θ(n +k)O(n +k)O(k) Shell SortΩ(n log(n))θ(n log(n))O(n^2)O(1) Tim SortΩ(n)θ(n log(n))O(n log(n))O(n) Tree SortΩ(n log(n))θ(n log(n))O(n^2)O(n) ...