Co(NO3)2.6(H2O)的分子量 238.1612 g/mol Co(NO3)2.6(H2O)的摩尔质量和分子量为{1,数字}。 由Co(NO3)2.6(H2O)组成 元素标志原子质量原子#质量百分比 鈷 Co 58.9332 g/mol 1 24.7451% 氮 N 36.4174 g/mol 2.6 15.2911% 氧 O 140.7947 g/mol 8.8 59.1174% 氫 H 2.0159 g/mol 2 0.8464% Co(...
(NIOH)2SO4 C6H7O3P CH3COOH6 Recently Calculated Molar Masses Find the Molar Mass of Cobalt(II) Hydroxide, Co(H2O)2Step-by-Step There are 4 easy steps to find the molar mass of Co(H2O)2 based on its chemical formula. 1. Count The Number of Each Atom ...
物质的摩尔质量计算结果:分子式: Co(NO3)26H2O摩尔质量: 1689.052 g/mol 1g=5.92048083777172E-04 mol各种元素摩尔质量百分比:元素 数量 相对原子质量 百分比Co 1 58.9332 3.49%N 26 14.007 21.56%O 79 15.999 74.83%H 2 1.0079 0.12%热门应用: 物质的摩尔质量的计算 分子式: HCl...
Co2O3的摩尔质量和分子量为{1,数字}。 由三氧化二钴- Co2O3组成 元素标志原子质量原子#质量百分比 鈷Co117.8664 g/mol271.0618% 氧O47.9982 g/mol328.9382% 三氧化二钴 元素 质量百分比鈷117.866g鈷117.866g氧47.9982g氧47.9982gCo2O3 原子#氧3氧3鈷2鈷2 ...
物质的摩尔质量计算结果:分子式: Co(nO3)3.6h2O摩尔质量: 353.034 g/mol 1g=2.83258836259397E-03 mol各种元素摩尔质量百分比:元素 数量 相对原子质量 百分比Co 1 58.9332 16.69%n 3 14.007 11.9%O 15 15.999 67.98%h 12 1.0079 3.43%热门应用: 物质的摩尔质量的计算 分子式: HCl...
Na3(PO4)(12H2O) COOHCl C6H5C2H3(OH)2 LaFeSi HF2{-} C3(H8) Fe2H5 NH3C2H2O2 C6H5(C3H7)2 Recently Calculated Molar Masses Find the Molar Mass of NH42Co3 Step-by-Step There are 4 easy steps to find the molar mass of NH42Co3 based on its chemical formula. 1. Count The Num...
Co(NO3)2的摩尔质量和分子量为{1,数字}。 由硝酸钴 - Co(NO3)2组成 原子质量原子#质量百分比 Co 58.9332 g/mol 1 32.214% N 28.0134 g/mol 2 15.3126% O 95.9964 g/mol 6 52.4734% 硝酸钴 元素 质量百分比氧95.9964g氧95.9964g鈷58.9332g鈷58.9332g氮28.0134g氮28.0134g Co(NO3)2 原子#氧6氧6氮2...
通过浸渍法担载Co, 称取0.49 g的Co(NO3)2·6H2O置于100 mL烧杯, 溶解搅拌, 再加入0.50 g载体搅拌浸渍, 待水分几乎完全挥发置于烘箱中80 ℃干燥12 h, 再将干燥样品置于管式炉中500 ℃焙烧4 h, 最终得到Co/MgO-Al2O3催化剂(分别记为Co/MgO、Co/M1A3-Spinel、Co/M3A1-Solid、Co/Al2O3), 通过ICP...
Briefly, Zn(NO3)2·6H2O (5 mmol) was dissolved in 50 ml DMF and varying molar ratios of mIm and bIm (the molar ratio used for each sample is presented in Table 1) was dissolved in 50 ml MeOH. The Zn(NO3)2 solution was thereafter poured into the mIm/bIm solution and the mixture...
The nitrate (NO3−) electroreduction into ammonia (NH3) represents a promising approach for sustainable NH3 synthesis. However, the variation of adsorption configurations renders great difficulties in the simultaneous optimization of binding energy for