● 残差模块的引入,解决了“模型随着深度增加性能下降的问题”,使训练深层的模型成为可能。 5.4 应用场景 ● 残差网络在设计之初,主要是服务于卷积神经网络(CNN),在计算机视觉领域应用较多,但是随着CNN结构的发展,在很多文本处理,文本分类里面(n-gram),也同样展现出来很好的效果。 5.5 补充 1)如何在比较深的残差网...
说实话,这个model的意义比后面那些model都大很多,首先它证明了CNN在复杂模型下的有效性,然后GPU实现使得训练在可接受的时间范围内得到结果,确实让CNN和GPU都大火了一把,顺便推动了有监督DL的发展。 模型结构见下图,别看只有寥寥八层(不算input层),但是它有60M以上的参数总量,事实上在参数量上比后面的网络都大。
卷积神经网络(Convolutional Neural Networks, CNN)是深度学习中非常常见的算法(模型),其在图像处理中应用广泛,基于CNN的专利申请近些年也增长迅速。因此作为(特别是电学领域的)专利代理师,理解CNN的基本步骤(结构)以及熟悉一些CNN的经典模型如LeNet-5、AlexNeT、VGG-16、GoogLeNet等也有助于更好地掌握相关领域申请的技...
二、AlexNet 在imagenet上的图像分类challenge上大神Alex提出的alexnet网络结构模型赢得了2012届的冠军,振奋人心,利用CNN实现了图片分类,别人用传统的机器学习算法调参跳到半死也就那样,Alex利用CNN精度远超传统的网络。 1. conv1阶段DFD(data flow diagram): 第一层输入数据为原始的2272273的图像,这个图像被11113的卷...
CNN经典网络模型演进:从LeNet到DenseNet,CNN网络架构演进:从LeNet到DenseNet卷积神经网络可谓是现在深度学习领域中大红大紫的网络框架,尤其在计算机视觉领域更是一枝独秀。CNN从90年代的LeNet开始,21世纪初沉寂了10年,直到12年AlexNet开始又再焕发第二春,从ZFNet到VG
其中一些经典模型的代码实现可以康康这篇!《经典卷积神经网络Python,TensorFlow全代码实现》 LeNet 1998年提出的模型,为了识别手写数字。7层CNN,网络结构就是卷积池化+卷积池化+3层全连接 为了节省运算,不是所有通道都参与下一个卷积运算。 输出层不是用softmax,而是用了高斯连接。
第一个典型的CNN是LeNet5网络,而第一个大放异彩的CNN却是AlexNet。2012年在全球知名的图像识别竞赛 ILSVRC 中,AlexNet横空出世,直接将错误率降低了近 10 个百分点,这是之前所有机器学习模型无法做到的。 在计算机视觉领域目标检测和识别 通常用机器学习的方法来解决。为了提高识别的效果,我们以通过收...
CNN网络一般要经过Pooling或者stride>1的Conv来降低特征图的大小 但是DenseNet的密集连接方式需要特征图大小保持一致,为了解决这个问题,DenseNet网络中使用DenseBlock+Transition的结构,其中DenseBlock是包含很多层的模块,每个层的特征图大小相同,层与层之间采用密集连接方式。而Transition模块是连接两个相邻的DenseBlock,并且通...
2012年,Imagenet比赛冠军的model——Alexnet [2](以第一作者alex命名)。caffe的model文件在这里。说实话,这个model的意义比后面那些model都大很多,首先它证明了CNN在复杂模型下的有效性,然后GPU实现使得训练在可接受的时间范围内得到结果,确实让CNN和GPU都大火了一把,顺便推动了有监督DL的发展。
GoogleNet,也被称为Inception-v1,是由Google团队在2014年提出的一种深度卷积神经网络架构,专门用于图像分类和特征提取任务。它在ILSVRC(ImageNet Large Scale Visual Recognition Challenge)比赛中取得了优异的成绩,引入了"Inception"模块,这是一种多尺度卷积核并行