python class CNN(nn.Module): def __init__(self): super(CNN, self).__init__() self.conv1 = nn.Conv2d(3, 16, 5, 1) # 输入通道3,输出通道16,卷积核大小5,步长1 self.pool = nn.MaxPool2d(2, 2) # 池化窗口大小2,步长2 self.conv2 = nn.Conv2d(16, 32, 5, 1) # 输入通道16...
下面是Python实现一个简单的CNN(卷积神经网络)的示例代码: import numpy as np # Sigmoid函数 def sigmoid(x): return 1 / (1 + np.exp(-x)) # 卷积层 class ConvolutionalLayer: def __init__(self, input_shape, num_filters, kernel_size): self.input_shape = input_shape self.num_filters = ...
import torch.nn.functional as F #使用functional中的ReLu激活函数 #CNN模型 class Net(torch.nn.Module): def __init__(self): super(Net, self).__init__() #两个卷积层 self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5) #1为in_channels 10为out_channels self.conv2 = torch.nn.Conv2d...
第一部分简单介绍网络范式CNN+RNN+CTC,工程代码链接提供了VGG+BiLSTM+CTC的具体实践方式,在工程应用中,更多会使用残差结构网络ResNet或者DenseNet作为CNN部分的特征提取,虽然使用这些结构会提升网络效果,但同时带来了网络结构更复杂。RepVGG提供了一种更适合工程化的方法,在训练的时候使用类似ResNet的残差结构增加网络特征...
CNN(卷积神经网络)模型以及R语言实现 当我们将CNN(卷积神经网络)模型用于训练多维类型的数据(例如图像)时,它们非常有用。我们还可以实现CNN模型进行回归数据分析。我们之前使用Python进行CNN模型回归 ,在本视频中,我们在R中实现相同的方法。我们使用一维卷积函数来应用CNN模型。我们需要Keras R接口才能在R中使用Keras神经...
基于CNN-LSTM-Attention的负荷预测研究是一个结合了卷积神经网络(CNN)、长短期记忆网络(LSTM)和注意力机制(Attention)的复合模型,旨在提高电力负荷预测的精度和鲁棒性。以下是对该研究的详细概述: 一、研究背景与意义 负荷预测是电力系统中一项至关重要的任务,对于电力系统的规划、调度和运维具有重要意义。然而,由于负荷...
关于CNN的其它实例练习可见此篇基于MNIST手写体数字识别–含可直接使用代码【Python+Tensorflow+CNN+Keras】 4.基于文本挖掘的推荐模型 将自定义单条评论进行单词分量,预测,取预测结果元素最大值所对应的索引即为预测评分 二、 结果与分析 1. 基于CNN的评论文本挖掘 ...
本文将仅使用NumPy实现CNN网络,创建三个层模块,分别为卷积层(Conv)、ReLu激活函数和最大池化(max pooling)。 1.读取输入图像 以下代码将从skimage Python库中读取已经存在的图像,并将其转换为灰度图: 1. import skimage.data 2. # Reading the image
CNN卷积神经网络代码实现【基于Python,Tensorflow】 一.概述 卷积神经网络【Convolutional Neural Networks,CNN】是一类包含卷积计算且具有深度结构的前馈神经网络【Feedforward Neural Networks】是深度学习的代表算法之一。卷积神经网络具有表征学习【representation learning】能力,能够按其阶层结构对输入信息进行平移不变分类。