输入层:首先输入数据(如图像或序列)进入CNN。 卷积层:CNN通过卷积和池化操作提取数据的局部特征,生成特征图。 展平层:将CNN输出的特征图展平为一维向量。 GRU层:将展平的向量输入GRU,GRU通过门控机制(更新门和重置门)处理序列数据,学习时间依赖性。 输出层:通过全连接层和激活函数,输出预测结果。 数理基础 CNN的...
卷积神经网络(CNN)是一种常用的深度学习模型,它在图像处理领域取得了很大的成功。在故障诊断中,我们可以将故障数据看作是一种图像数据,通过卷积操作可以提取出图像的局部特征。然而,单纯的CNN模型可能无法捕捉到时间序列数据中的时序信息。因此,我们引入门控循环单元(GRU)来处理时序数据。 CNN-GRU模型的流程如下: 数据...
CNN通过多个卷积层和池化层的堆叠来提取输入数据的特征。每个卷积层都包含多个卷积核,用于捕捉不同的特征。池化层则用于降低数据的维度,减少计算量并增强模型的鲁棒性。 4.2 GRU网络 GRU(Gated Recurrent Unit)是一种先进的循环神经网络(RNN)变体,专门设计用于处理序列数据,如文本、语音、时间序列等。GRU旨在解决传统R...
如图显示了一个CNN的整体架构,包括两个主要部分:特征提取和分类器。在特征提取层,网络的每一层都接收来自其前一层的输出作为其输入,并将其输出作为输入传递给下一层。 这个CNN架构由三种类型层组合而成:卷积(convolution),最大池化(max-pooling)和分类(classification)。在网络的低层和中层有两种类型的层:卷积层和...
MATLAB实现CNN-GRU卷积门控循环单元多输入多输出,运行环境Matlab2020及以上。采用特征融合的方法,通过卷积网络提取出浅层特征与深层特征并进行联接,对特征通过卷积进行融合,将获得的矢量信息输入GRU单元。 程序设计 %---
基于贝叶斯(bayes)优化卷积神经网络-门控循环单元(CNN-GRU)回归预测,BO-CNN-GRU/Bayes-CNN-GRU多输入单输出模型。 1.优化参数为:学习率,隐含层节点,正则化参数。 2.评价指标包括:R2、MAE、MSE、RMSE和MAPE等,方便学习和替换数据。 3.运行环境matlab2020b及以上。
为了解决传统 CNN-GRU 模型在处理高维多模态数据时的特征提取能力不足问题,本文提出了一种基于凌日优化算法优化卷积门控循环单元融合多头注意力机制(TSOA-CNN-GRU-Mutilhead-Attention)的数据多维输入分类模型。该模型主要包括以下几个部分: **凌日优化算法优化 CNN-GRU 模型超参数:**凌日优化算法是一种基于种群搜索的...
齿轮箱卷积神经网络(CNN)门控递归单元(GRU)故障诊断旋转部件是否发生局部故障,关键是判断其振动信号在空间上是否出现周期性冲击以及周期大小.卷积神经网络(CNN)善于挖掘数据空间上的局部重要的信息特征,具有"端对端"的优势,从而克服了人工提取特征的缺陷;由于振动信号在时间维度上也蕴含着丰富的信息,而长短时记忆网络(...
基于CNN-GRU和CA-VGG特征融合的调制识别模型 李濛,吴呈瑜,占敖 (浙江理工大学信息科学与工程学院,浙江 杭州 310018) 【摘 要】针对深度学习的调制识别模型在信噪比较低的情况下存在识别率低以及部分相似信号难以识别的问题,提出了一种自动调制...
Predict the trajectory of the vehicles in HCM city streets with YOLOv7 + DeepSORT + CNN-LSTM/CNN-GRU. deep-learningvehicle-detection-and-trackingcnn-lstmcnn-grudeepsortvehicle-trajectory-predictiontime-series-regressionyolov7vietnam-trafic