针对CNN+transformer组合方向的研究也成为了当下计算机视觉领域研究中的大热主题。 CNN-Transformer架构凭借众所周知的优势,在视觉任务上取得了令人瞩目的效果,它不仅可以提高模型在多种计算机视觉任务中的性能,还能实现较好的延迟和精度之间的权衡。为挖掘CNN-Transformer混合架构更多的潜力,有关于它的各种变体的研究也逐步增...
本文基于前期介绍的风速数据(文末附数据集),介绍一种多特征变量序列预测模型CNN-Transformer,以提高时间序列数据的预测性能。该数据集一共有天气、温度、湿度、气压、风速等九个变量,通过滑动窗口制作数据集,利用多变量来预测风速。 LSTF(Long Sequence Time-Series Forecasting)问题是指在时间序列预测中需要处理长序列...
CNN的成功依赖于其两个固有的归纳偏置,即平移不变性和局部相关性,而视觉Transformer结构通常缺少这种特性,导致通常需要大量数据才能超越CNN的表现,CNN在小数据集上的表现通常比纯Transformer结构要好。 CNN感受野有限导致很难捕获全局信息,而Transformer可以捕获长距离依赖关系,因此ViT出现之后有许多工作尝试将CNN和Transformer...
最后,这些方法无法应用于视觉 Transformer 模型进行优化,因为存在LayerNorm层。 为了缓解这些问题,作者提出了一个渐进训练策略和一种新的模块削减方法,该方法可以剪枝CNN和视觉 Transformer 模型。渐进训练策略可以在充分利用基准模型权重的子网结构上平滑地转移基准模型结构,从而实现更高的准确性。 作者提出的模块削减方法可...
1、SCTNet: Single-Branch CNN with Transformer Semantic Information for Real-Time Segmentation 方法: - SCTNet架构:提出了一种单分支卷积神经网络(CNN),该网络在训练时利用transformer作为语义分支来提取丰富的长距离上下文信息,而在推理时仅部署单分支CNN。
在深度学习领域,CNN(卷积神经网络)和Transformer是两种极具影响力的模型架构。CNN以其强大的空间特征提取能力在图像和视频处理中占据主导地位,而Transformer则以其卓越的序列建模能力在自然语言处理领域大放异彩。近年来,研究人员开始探索将Transformer引入CNN中,以进一步提升模型的性能和应用范围。本文将详细介绍CNN模块中引...
transformer和cnn结合的模型图 cnn和transformer区别 1. Transformer 模型结构 处理自然语言序列的模型有rnn, cnn(textcnn),但是现在介绍一种新的模型,transformer。与RNN不同的是,Transformer直接把一句话当做一个矩阵进行处理,要知道,RNN是把每一个字的Embedding Vector输入进行,隐层节点的信息传递来完成编码的工作。
在实验中,作者发现,在中等规模的数据集上(例如ImageNet),transformer模型的表现不如ResNets;而当数据集的规模扩大,transformer模型的效果接近或者超过了目前的一些SOTA结果。作者认为是大规模的训练可以鼓励transformer学到CNN结构所拥有的translation equivariance和locality. ...
【新智元导读】Transformer和CNN在处理视觉表征方面都有着各自的优势以及一些不可避免的问题。因此,国科大、鹏城实验室和华为研究人员首次将二者进行了融合并提出全新的Conformer模型,其可以在不显著增加计算量的前提下显著提升了基网表征能力。论文已被ICCV 2021接收。
深度学习模型的统一表示:CNN, RNN, GNN 和 Transformer RPN 实现了丰富的功能函数,具体列表如上图所示。通过组合使用上述功能函数,RPN 2 不仅可以构建功能强大的模型结构,并且可以统一现有基础模型的表示,包括 CNN,RNN,GNN 和 Transformer 模型。 实验验证 ...